5,622 research outputs found

    Affine Registration of label maps in Label Space

    Get PDF
    Two key aspects of coupled multi-object shape\ud analysis and atlas generation are the choice of representation\ud and subsequent registration methods used to align the sample\ud set. For example, a typical brain image can be labeled into\ud three structures: grey matter, white matter and cerebrospinal\ud fluid. Many manipulations such as interpolation, transformation,\ud smoothing, or registration need to be performed on these images\ud before they can be used in further analysis. Current techniques\ud for such analysis tend to trade off performance between the two\ud tasks, performing well for one task but developing problems when\ud used for the other.\ud This article proposes to use a representation that is both\ud flexible and well suited for both tasks. We propose to map object\ud labels to vertices of a regular simplex, e.g. the unit interval for\ud two labels, a triangle for three labels, a tetrahedron for four\ud labels, etc. This representation, which is routinely used in fuzzy\ud classification, is ideally suited for representing and registering\ud multiple shapes. On closer examination, this representation\ud reveals several desirable properties: algebraic operations may\ud be done directly, label uncertainty is expressed as a weighted\ud mixture of labels (probabilistic interpretation), interpolation is\ud unbiased toward any label or the background, and registration\ud may be performed directly.\ud We demonstrate these properties by using label space in a gradient\ud descent based registration scheme to obtain a probabilistic\ud atlas. While straightforward, this iterative method is very slow,\ud could get stuck in local minima, and depends heavily on the initial\ud conditions. To address these issues, two fast methods are proposed\ud which serve as coarse registration schemes following which the\ud iterative descent method can be used to refine the results. Further,\ud we derive an analytical formulation for direct computation of the\ud "group mean" from the parameters of pairwise registration of all\ud the images in the sample set. We show results on richly labeled\ud 2D and 3D data sets

    Coupled non-parametric shape and moment-based inter-shape pose priors for multiple basal ganglia structure segmentation

    Get PDF
    This paper presents a new active contour-based, statistical method for simultaneous volumetric segmentation of multiple subcortical structures in the brain. In biological tissues, such as the human brain, neighboring structures exhibit co-dependencies which can aid in segmentation, if properly analyzed and modeled. Motivated by this observation, we formulate the segmentation problem as a maximum a posteriori estimation problem, in which we incorporate statistical prior models on the shapes and inter-shape (relative) poses of the structures of interest. This provides a principled mechanism to bring high level information about the shapes and the relationships of anatomical structures into the segmentation problem. For learning the prior densities we use a nonparametric multivariate kernel density estimation framework. We combine these priors with data in a variational framework and develop an active contour-based iterative segmentation algorithm. We test our method on the problem of volumetric segmentation of basal ganglia structures in magnetic resonance (MR) images. We present a set of 2D and 3D experiments as well as a quantitative performance analysis. In addition, we perform a comparison to several existent segmentation methods and demonstrate the improvements provided by our approach in terms of segmentation accuracy

    Medical image segmentation and analysis using statistical shape modelling and inter-landmark relationships

    Get PDF
    The study of anatomical morphology is of great importance to medical imaging, with applications varying from clinical diagnosis to computer-aided surgery. To this end, automated tools are required for accurate extraction of the anatomical boundaries from the image data and detailed interpretation of morphological information. This thesis introduces a novel approach to shape-based analysis of medical images based on Inter- Landmark Descriptors (ILDs). Unlike point coordinates that describe absolute position, these shape variables represent relative configuration of landmarks in the shape. The proposed work is motivated by the inherent difficulties of methods based on landmark coordinates in challenging applications. Through explicit invariance to pose parameters and decomposition of the global shape constraints, this work permits anatomical shape analysis that is resistant to image inhomogeneities and geometrical inconsistencies. Several algorithms are presented to tackle specific image segmentation and analysis problems, including automatic initialisation, optimal feature point search, outlier handling and dynamic abnormality localisation. Detailed validation results are provided based on various cardiovascular magnetic resonance datasets, showing increased robustness and accuracy.Open acces

    Iterative graph cuts for image segmentation with a nonlinear statistical shape prior

    Full text link
    Shape-based regularization has proven to be a useful method for delineating objects within noisy images where one has prior knowledge of the shape of the targeted object. When a collection of possible shapes is available, the specification of a shape prior using kernel density estimation is a natural technique. Unfortunately, energy functionals arising from kernel density estimation are of a form that makes them impossible to directly minimize using efficient optimization algorithms such as graph cuts. Our main contribution is to show how one may recast the energy functional into a form that is minimizable iteratively and efficiently using graph cuts.Comment: Revision submitted to JMIV (02/24/13

    Discrimination analysis using Multi-object statistics of shape and pose

    Get PDF
    journal articleA main focus of statistical shape analysis is the description of variability of a population of geometric objects. In this paper, we present work towards modeling the shape and pose variability of sets of multiple objects. Principal geodesic analysis (PGA) is the extension of the standard technique of principal component analysis (PCA) into the nonlinear Riemannian symmetric space of pose and our medial m-rep shape description, a space in which use of PCA would be incorrect. In this paper, we discuss the decoupling of pose and shape in multi-object sets using different normalization settings. Further, we introduce methods of describing the statistics of object pose and object shape, both separately and simultaneously using a novel extension of PGA. We demonstrate our methods in an application to a longitudinal pediatric autism study with object sets of 10 subcortical structures in a population of 47 subjects. The results show that global scale accounts for most of the major mode of variation across time. Furthermore, the PGA components and the corresponding distribution of different subject groups vary significantly depending on the choice of normalization, which illustrates the importance of global and local pose alignment in multi-object shape analysis. Finally, we present results of using distance weighted discrimination analysis (DWD) in an attempt to use pose and shape features to separate subjects according to diagnosis, as well as visualize discriminating differences
    • …
    corecore