965,162 research outputs found

    Reconciling Distance Functions and Level Sets

    Get PDF
    This paper is concerned with the simulation of the Partial Differential Equation (PDE) driven evolution of a closed surface by means of an implicit representation. In most applications, the natural choice for the implicit representation is the signed distance function to the closed surface. Osher and Sethian propose to evolve the distance function with a Hamilton-Jaco- bi equation. Unfortunately the solution to this equation is not a distance function. As a consequence, the practical application of the level set method is plagued with such questions as when do we have to "reinitialize" the distance function? How do we "reinitialize" the distance function? Etc... which reveal a disagreement between the theory and its implementation. This paper proposes an alternative to the use of Hamilton-Jacobi equations which eliminates this contradiction: in our method the implicit representation always remains a distance function by construction, and the implementation does not differ from the theory anymore. This is achieved through the introduction of a new equation. Besides its theoretical advantages, the proposed method also has several practical advantages which we demonstrate in three applications: (i) the segmentation of the human cortex surfaces from MRI images using two coupled surfaces [26], (ii) the construction of a hierarchy of Euclidean skeletons of a 3D surface, (iii) the reconstructio- n of the surface of 3D objects through stereo [12]

    Point Cloud Structural Parts Extraction based on Segmentation Energy Minimization

    Get PDF
    In this work we consider 3D point sets, which in a typical setting represent unorganized point clouds. Segmentation of these point sets requires first to single out structural components of the unknown surface discretely approximated by the point cloud. Structural components, in turn, are surface patches approximating unknown parts of elementary geometric structures, such as planes, ellipsoids, spheres and so on. The approach used is based on level set methods computing the moving front of the surface and tracing the interfaces between different parts of it. Level set methods are widely recognized to be one of the most efficient methods to segment both 2D images and 3D medical images. Level set methods for 3D segmentation have recently received an increasing interest. We contribute by proposing a novel approach for raw point sets. Based on the motion and distance functions of the level set we introduce four energy minimization models, which are used for segmentation, by considering an equal number of distance functions specified by geometric features. Finally we evaluate the proposed algorithm on point sets simulating unorganized point clouds

    Variational Analysis of Constrained M-Estimators

    Get PDF
    We propose a unified framework for establishing existence of nonparametric M-estimators, computing the corresponding estimates, and proving their strong consistency when the class of functions is exceptionally rich. In particular, the framework addresses situations where the class of functions is complex involving information and assumptions about shape, pointwise bounds, location of modes, height at modes, location of level-sets, values of moments, size of subgradients, continuity, distance to a "prior" function, multivariate total positivity, and any combination of the above. The class might be engineered to perform well in a specific setting even in the presence of little data. The framework views the class of functions as a subset of a particular metric space of upper semicontinuous functions under the Attouch-Wets distance. In addition to allowing a systematic treatment of numerous M-estimators, the framework yields consistency of plug-in estimators of modes of densities, maximizers of regression functions, level-sets of classifiers, and related quantities, and also enables computation by means of approximating parametric classes. We establish consistency through a one-sided law of large numbers, here extended to sieves, that relaxes assumptions of uniform laws, while ensuring global approximations even under model misspecification
    • …
    corecore