1,117 research outputs found

    MIMO Interference Alignment Over Correlated Channels with Imperfect CSI

    Full text link
    Interference alignment (IA), given uncorrelated channel components and perfect channel state information, obtains the maximum degrees of freedom in an interference channel. Little is known, however, about how the sum rate of IA behaves at finite transmit power, with imperfect channel state information, or antenna correlation. This paper provides an approximate closed-form signal-to-interference-plus-noise-ratio (SINR) expression for IA over multiple-input-multiple-output (MIMO) channels with imperfect channel state information and transmit antenna correlation. Assuming linear processing at the transmitters and zero-forcing receivers, random matrix theory tools are utilized to derive an approximation for the post-processing SINR distribution of each stream for each user. Perfect channel knowledge and i.i.d. channel coefficients constitute special cases. This SINR distribution not only allows easy calculation of useful performance metrics like sum rate and symbol error rate, but also permits a realistic comparison of IA with other transmission techniques. More specifically, IA is compared with spatial multiplexing and beamforming and it is shown that IA may not be optimal for some performance criteria.Comment: 21 pages, 7 figures, submitted to IEEE Transactions on Signal Processin

    Joint Scheduling and ARQ for MU-MIMO Downlink in the Presence of Inter-Cell Interference

    Full text link
    User scheduling and multiuser multi-antenna (MU-MIMO) transmission are at the core of high rate data-oriented downlink schemes of the next-generation of cellular systems (e.g., LTE-Advanced). Scheduling selects groups of users according to their channels vector directions and SINR levels. However, when scheduling is applied independently in each cell, the inter-cell interference (ICI) power at each user receiver is not known in advance since it changes at each new scheduling slot depending on the scheduling decisions of all interfering base stations. In order to cope with this uncertainty, we consider the joint operation of scheduling, MU-MIMO beamforming and Automatic Repeat reQuest (ARQ). We develop a game-theoretic framework for this problem and build on stochastic optimization techniques in order to find optimal scheduling and ARQ schemes. Particularizing our framework to the case of "outage service rates", we obtain a scheme based on adaptive variable-rate coding at the physical layer, combined with ARQ at the Logical Link Control (ARQ-LLC). Then, we present a novel scheme based on incremental redundancy Hybrid ARQ (HARQ) that is able to achieve a throughput performance arbitrarily close to the "genie-aided service rates", with no need for a genie that provides non-causally the ICI power levels. The novel HARQ scheme is both easier to implement and superior in performance with respect to the conventional combination of adaptive variable-rate coding and ARQ-LLC.Comment: Submitted to IEEE Transactions on Communications, v2: small correction

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Eigenvalue Dynamics of a Central Wishart Matrix with Application to MIMO Systems

    Full text link
    We investigate the dynamic behavior of the stationary random process defined by a central complex Wishart (CW) matrix W(t){\bf{W}}(t) as it varies along a certain dimension tt. We characterize the second-order joint cdf of the largest eigenvalue, and the second-order joint cdf of the smallest eigenvalue of this matrix. We show that both cdfs can be expressed in exact closed-form in terms of a finite number of well-known special functions in the context of communication theory. As a direct application, we investigate the dynamic behavior of the parallel channels associated with multiple-input multiple-output (MIMO) systems in the presence of Rayleigh fading. Studying the complex random matrix that defines the MIMO channel, we characterize the second-order joint cdf of the signal-to-noise ratio (SNR) for the best and worst channels. We use these results to study the rate of change of MIMO parallel channels, using different performance metrics. For a given value of the MIMO channel correlation coefficient, we observe how the SNR associated with the best parallel channel changes slower than the SNR of the worst channel. This different dynamic behavior is much more appreciable when the number of transmit (NTN_T) and receive (NRN_R) antennas is similar. However, as NTN_T is increased while keeping NRN_R fixed, we see how the best and worst channels tend to have a similar rate of change.Comment: 15 pages, 9 figures and 1 table. This work has been accepted for publication at IEEE Trans. Inf. Theory. Copyright (c) 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to [email protected]

    Low-complexity smart antenna methods for third-generation W-CDMA systems

    Get PDF
    • …
    corecore