12,851 research outputs found

    Radial Structure of the Internet

    Full text link
    The structure of the Internet at the Autonomous System (AS) level has been studied by both the Physics and Computer Science communities. We extend this work to include features of the core and the periphery, taking a radial perspective on AS network structure. New methods for plotting AS data are described, and they are used to analyze data sets that have been extended to contain edges missing from earlier collections. In particular, the average distance from one vertex to the rest of the network is used as the baseline metric for investigating radial structure. Common vertex-specific quantities are plotted against this metric to reveal distinctive characteristics of central and peripheral vertices. Two data sets are analyzed using these measures as well as two common generative models (Barabasi-Albert and Inet). We find a clear distinction between the highly connected core and a sparse periphery. We also find that the periphery has a more complex structure than that predicted by degree distribution or the two generative models

    Implementation and Deployment of a Distributed Network Topology Discovery Algorithm

    Full text link
    In the past few years, the network measurement community has been interested in the problem of internet topology discovery using a large number (hundreds or thousands) of measurement monitors. The standard way to obtain information about the internet topology is to use the traceroute tool from a small number of monitors. Recent papers have made the case that increasing the number of monitors will give a more accurate view of the topology. However, scaling up the number of monitors is not a trivial process. Duplication of effort close to the monitors wastes time by reexploring well-known parts of the network, and close to destinations might appear to be a distributed denial-of-service (DDoS) attack as the probes converge from a set of sources towards a given destination. In prior work, authors of this report proposed Doubletree, an algorithm for cooperative topology discovery, that reduces the load on the network, i.e., router IP interfaces and end-hosts, while discovering almost as many nodes and links as standard approaches based on traceroute. This report presents our open-source and freely downloadable implementation of Doubletree in a tool we call traceroute@home. We describe the deployment and validation of traceroute@home on the PlanetLab testbed and we report on the lessons learned from this experience. We discuss how traceroute@home can be developed further and discuss ideas for future improvements

    ELASTICITY: Topological Characterization of Robustness in Complex Networks

    Full text link
    Just as a herd of animals relies on its robust social structure to survive in the wild, similarly robustness is a crucial characteristic for the survival of a complex network under attack. The capacity to measure robustness in complex networks defines the resolve of a network to maintain functionality in the advent of classical component failures and at the onset of cryptic malicious attacks. To date, robustness metrics are deficient and unfortunately the following dilemmas exist: accurate models necessitate complex analysis while conversely, simple models lack applicability to our definition of robustness. In this paper, we define robustness and present a novel metric, elasticity- a bridge between accuracy and complexity-a link in the chain of network robustness. Additionally, we explore the performance of elasticity on Internet topologies and online social networks, and articulate results

    K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases

    Get PDF
    We consider the kk-core decomposition of network models and Internet graphs at the autonomous system (AS) level. The kk-core analysis allows to characterize networks beyond the degree distribution and uncover structural properties and hierarchies due to the specific architecture of the system. We compare the kk-core structure obtained for AS graphs with those of several network models and discuss the differences and similarities with the real Internet architecture. The presence of biases and the incompleteness of the real maps are discussed and their effect on the kk-core analysis is assessed with numerical experiments simulating biased exploration on a wide range of network models. We find that the kk-core analysis provides an interesting characterization of the fluctuations and incompleteness of maps as well as information helping to discriminate the original underlying structure

    The Dynamics of Internet Traffic: Self-Similarity, Self-Organization, and Complex Phenomena

    Full text link
    The Internet is the most complex system ever created in human history. Therefore, its dynamics and traffic unsurprisingly take on a rich variety of complex dynamics, self-organization, and other phenomena that have been researched for years. This paper is a review of the complex dynamics of Internet traffic. Departing from normal treatises, we will take a view from both the network engineering and physics perspectives showing the strengths and weaknesses as well as insights of both. In addition, many less covered phenomena such as traffic oscillations, large-scale effects of worm traffic, and comparisons of the Internet and biological models will be covered.Comment: 63 pages, 7 figures, 7 tables, submitted to Advances in Complex System

    The Philanthropic Landscape in the United States: A Topology of Trends

    Get PDF
    Over the last decade, the field of philanthropy has been in a constant state of evolution. New wealth has brought new philanthropists into the field, many seeking to apply their business acumen to their philanthropic work. There also has been a corresponding growth in consultants and advisors providing guidance and assistance on all aspects of giving. The growth of new technologies has revolutionized communications, social organizing, data collection, and program delivery. Additionally, the line between sectors is blurring and many funders and donors are exploring partnerships across sectors, if not focusing their philanthropic efforts solely on private sector driven initiatives. This paper was commissioned as part of the process undertaken by the Africa Grantmakers' Affinity Group (AGAG) to develop a new strategic plan that responds to changes int he landscapes in Africa and in philanthropy. The changes in philanthropy are vast and a full cataloging of them is outside of the scope of this brief paper. What this paper strives to provide is a brief overview of the major trends that have been driving philanthropy over the last three to five years and where possible, provide specific examples of these various types of philanthropy at work in Africa with the hope of fostering reflection and coversation as AGAG moves into its strategic planning process
    • …
    corecore