105,650 research outputs found

    Learning Non-robustness using Simulation-based Testing: a Network Traffic-shaping Case Study

    Full text link
    An input to a system reveals a non-robust behaviour when, by making a small change in the input, the output of the system changes from acceptable (passing) to unacceptable (failing) or vice versa. Identifying inputs that lead to non-robust behaviours is important for many types of systems, e.g., cyber-physical and network systems, whose inputs are prone to perturbations. In this paper, we propose an approach that combines simulation-based testing with regression tree models to generate value ranges for inputs in response to which a system is likely to exhibit non-robust behaviours. We apply our approach to a network traffic-shaping system (NTSS) -- a novel case study from the network domain. In this case study, developed and conducted in collaboration with a network solutions provider, RabbitRun Technologies, input ranges that lead to non-robustness are of interest as a way to identify and mitigate network quality-of-service issues. We demonstrate that our approach accurately characterizes non-robust test inputs of NTSS by achieving a precision of 84% and a recall of 100%, significantly outperforming a standard baseline. In addition, we show that there is no statistically significant difference between the results obtained from our simulated testbed and a hardware testbed with identical configurations. Finally we describe lessons learned from our industrial collaboration, offering insights about how simulation helps discover unknown and undocumented behaviours as well as a new perspective on using non-robustness as a measure for system re-configuration.Comment: This paper is accepted at the 16th IEEE International Conference on Software Testing, Verification and Validation (ICST 2023

    Annotated bibliography of software engineering laboratory literature

    Get PDF
    An annotated bibliography of technical papers, documents, and memorandums produced by or related to the Software Engineering Laboratory is given. More than 100 publications are summarized. These publications cover many areas of software engineering and range from research reports to software documentation. This document has been updated and reorganized substantially since the original version (SEL-82-006, November 1982). All materials have been grouped into eight general subject areas for easy reference: the Software Engineering Laboratory; the Software Engineering Laboratory-software development documents; software tools; software models; software measurement; technology evaluations; Ada technology; and data collection. Subject and author indexes further classify these documents by specific topic and individual author
    corecore