157,845 research outputs found
Altered Oxygen Utilisation in Rat Left Ventricle and Soleus after 14 Days, but Not 2 Days, of Environmental Hypoxia.
The effects of environmental hypoxia on cardiac and skeletal muscle metabolism are dependent on the duration and severity of hypoxic exposure, though factors which dictate the nature of the metabolic response to hypoxia are poorly understood. We therefore set out to investigate the time-dependence of metabolic acclimatisation to hypoxia in rat cardiac and skeletal muscle. Rats were housed under normoxic conditions, or exposed to short-term (2 d) or sustained (14 d) hypoxia (10% O2), after which samples were obtained from the left ventricle of the heart and the soleus for assessment of metabolic regulation and mitochondrial function. Mass-corrected maximal oxidative phosphorylation was 20% lower in the left ventricle following sustained but not short-term hypoxia, though no change was observed in the soleus. After sustained hypoxia, the ratio of octanoyl carnitine- to pyruvate- supported respiration was 11% and 12% lower in the left ventricle and soleus, respectively, whilst hexokinase activity increased by 33% and 2.1-fold in these tissues. mRNA levels of PPARα targets fell after sustained hypoxia in both tissues, but those of PPARα remained unchanged. Despite decreased Ucp3 expression after short-term hypoxia, UCP3 protein levels and mitochondrial coupling remained unchanged. Protein carbonylation was 40% higher after short-term but not sustained hypoxic exposure in the left ventricle, but was unchanged in the soleus at both timepoints. Our findings therefore demonstrate that 14 days, but not 2 days, of hypoxia induces a loss of oxidative capacity in the left ventricle but not the soleus, and a substrate switch away from fatty acid oxidation in both tissues
Analysis of left ventricular behaviour in diastole by means of finite element method
The human left ventricle in diastole can be modelled as a passive structure with incremental
internal pressure change being considered as the load. Recent developments in engineering stress
analysis provide techniques for predicting the behaviour of structures with complex geometry and
material properties, as is the case with the left ventricle. That which is most appropriate is the finite
element method which requires the use of a large digital computer. The ventricles of 2 patients have
been studied during diastole, the geometries having been derived from cineangiographic data (biplane),
and the pressure by means of catheter-tip manometers. Various descriptions of myocardial stress/strain
relations have been assumed and applied to the left ventricular wall in order to obtain the best match
between the calculated and observed deformation patterns. The manner in which the value and distribution
of stiffness in the left ventricle influences the shape change can therefore be determined, and
possible clinical implications deduced
Nonaxisymmetric mathematical model of the cardiac left ventricle anatomy
We describe a mathematical model of the shape and fibre direction field of the cardiac left ventricle. The ventricle is composed of surfaces which model myocardial sheets. On each surface, we construct a set of curves corresponding to myocardial fibres. Tangents to these curves form the myofibres direction field. The fibres are made as images of semicircle chords parallel to its diameter. To specify the left ventricle shape, we use a special coordinate system where the left ventricle boundaries are coordinate surfaces. We propose an analytic mapping from the semicircle to the special coordinate system. The model is correlated with Torrent-Guasp’s concept of the unique muscular band and with Pettigrew’s idea of nested surfaces.
Subsequently, two models of concrete normal canine and human left ventricles are constructed based on experimental Diffusion Tensor Magnetic Resonance Imaging data. The input data for the models is only the left ventricle shape. In a local coordinate system connected with the left ventricle meridional section, we calculate two fibre inclination angles, i.e. true fibre angle and helix angle. We obtained the angles found from the Diffusion Tensor Magnetic Resonance Imaging data and compared them with the model angles. We give the angle plots and show that the model adequately reproduces the fibre architecture in the majority of the left ventricle wall.
Based on the mathematical model proposed, one can construct a numerical mesh that makes it possible to solve electrophysiological and mechanical left ventricle activity problems in norm and pathology. In the special coordinate system mentioned, the numerical scheme is written in a rectangular area and the boundary conditions can simply be written. By changing the model parameters, one can set a general or regional ventricular wall thickening or the left ventricle shape change, which is typical for certain cardiac pathologies
Structure-based finite strain modelling of the human left ventricle in diastole
Finite strain analyses of the left ventricle provide important information on heart function and have the potential to provide insights into the biomechanics of myocardial contractility in health and disease. Systolic dysfunction is the most common cause of heart failure; however, abnormalities of diastolic function also contribute to heart failure, and are associated with conditions including left ventricular hypertrophy and diabetes. The clinical significance of diastolic abnormalities is less well understood than systolic dysfunction, and specific treatments are presently lacking. To obtain qualitative and quantitative information on heart function in diastole, we develop a three-dimensional computational model of the human left ventricle that is derived from noninvasive imaging data. This anatomically realistic model has a rule-based fibre structure and a structure-based constitutive model. We investigate the sensitivity of this comprehensive model to small changes in the constitutive parameters and to changes in the fibre distribution. We make extensive comparisons between this model and similar models that employ different constitutive models, and we demonstrate qualitative and quantitative differences in stress and strain distributions for the different constitutive models. We also provide an initial validation of our model through comparisons to experimental data on stress and strain distributions in the left ventricle
Twisted atrioventricular connections in double inlet right ventricle: evaluation by magnetic resonance imaging
Twisted atrioventricular connections occur almost exclusively in the hearts with biventricular atrioventricular connections. Only one example of double inlet left ventricle has been illustrated in which the axes of the two atrioventricular valves crossed each other. We describe herein three patients, and one autopsied specimen, with double inlet right ventricle in which magnetic resonance imaging clearly demonstrated twisted atrioventricular connections
- …
