6 research outputs found

    Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded Degree Graphs

    Full text link
    For a graph GG, let Z(G,λ)Z(G,\lambda) be the partition function of the monomer-dimer system defined by kmk(G)λk\sum_k m_k(G)\lambda^k, where mk(G)m_k(G) is the number of matchings of size kk in GG. We consider graphs of bounded degree and develop a sublinear-time algorithm for estimating logZ(G,λ)\log Z(G,\lambda) at an arbitrary value λ>0\lambda>0 within additive error ϵn\epsilon n with high probability. The query complexity of our algorithm does not depend on the size of GG and is polynomial in 1/ϵ1/\epsilon, and we also provide a lower bound quadratic in 1/ϵ1/\epsilon for this problem. This is the first analysis of a sublinear-time approximation algorithm for a # P-complete problem. Our approach is based on the correlation decay of the Gibbs distribution associated with Z(G,λ)Z(G,\lambda). We show that our algorithm approximates the probability for a vertex to be covered by a matching, sampled according to this Gibbs distribution, in a near-optimal sublinear time. We extend our results to approximate the average size and the entropy of such a matching within an additive error with high probability, where again the query complexity is polynomial in 1/ϵ1/\epsilon and the lower bound is quadratic in 1/ϵ1/\epsilon. Our algorithms are simple to implement and of practical use when dealing with massive datasets. Our results extend to other systems where the correlation decay is known to hold as for the independent set problem up to the critical activity

    Independent sets, matchings, and occupancy fractions

    Get PDF
    We prove tight upper bounds on the logarithmic derivative of the independence and matching polynomials of d-regular graphs. For independent sets, this theorem is a strengthening of Kahn's result that a disjoint union of copies of Kd;d maximizes the number of independent sets of a bipartite d-regular graph, Galvin and Tetali's result that the independence polynomial is maximized by the same, and Zhao's extension of both results to all d-regular graphs. For matchings, this shows that the matching polynomial and the total number of matchings of a d-regular graph are maximized by a union of copies of Kd;d. Using this we prove the asymptotic upper matching conjecture of Friedland, Krop, Lundow, and Markstrom. In probabilistic language, our main theorems state that for all d-regular graphs and all �, the occupancy fraction of the hard-core model and the edge occupancy fraction of the monomer-dimer model with fugacity � are maximized by Kd;d. Our method involves constrained optimization problems over distributions of random variables and applies to all d-regular graphs directly, without a reduction to the bipartite case. Using a variant of the method we prove a lower bound on the occupancy fraction of the hard-core model on any d-regular, vertex-transitive, bipartite graph: the occupancy fraction of such a graph is strictly greater than the occupancy fraction of the unique translationinvariant hard-core measure on the infinite d-regular tre
    corecore