6,070 research outputs found

    An Experimental Study of Reduced-Voltage Operation in Modern FPGAs for Neural Network Acceleration

    Get PDF
    We empirically evaluate an undervolting technique, i.e., underscaling the circuit supply voltage below the nominal level, to improve the power-efficiency of Convolutional Neural Network (CNN) accelerators mapped to Field Programmable Gate Arrays (FPGAs). Undervolting below a safe voltage level can lead to timing faults due to excessive circuit latency increase. We evaluate the reliability-power trade-off for such accelerators. Specifically, we experimentally study the reduced-voltage operation of multiple components of real FPGAs, characterize the corresponding reliability behavior of CNN accelerators, propose techniques to minimize the drawbacks of reduced-voltage operation, and combine undervolting with architectural CNN optimization techniques, i.e., quantization and pruning. We investigate the effect of environmental temperature on the reliability-power trade-off of such accelerators. We perform experiments on three identical samples of modern Xilinx ZCU102 FPGA platforms with five state-of-the-art image classification CNN benchmarks. This approach allows us to study the effects of our undervolting technique for both software and hardware variability. We achieve more than 3X power-efficiency (GOPs/W) gain via undervolting. 2.6X of this gain is the result of eliminating the voltage guardband region, i.e., the safe voltage region below the nominal level that is set by FPGA vendor to ensure correct functionality in worst-case environmental and circuit conditions. 43% of the power-efficiency gain is due to further undervolting below the guardband, which comes at the cost of accuracy loss in the CNN accelerator. We evaluate an effective frequency underscaling technique that prevents this accuracy loss, and find that it reduces the power-efficiency gain from 43% to 25%.Comment: To appear at the DSN 2020 conferenc

    High throughput spatial convolution filters on FPGAs

    Get PDF
    Digital signal processing (DSP) on field- programmable gate arrays (FPGAs) has long been appealing because of the inherent parallelism in these computations that can be easily exploited to accelerate such algorithms. FPGAs have evolved significantly to further enhance the mapping of these algorithms, included additional hard blocks, such as the DSP blocks found in modern FPGAs. Although these DSP blocks can offer more efficient mapping of DSP computations, they are primarily designed for 1-D filter structures. We present a study on spatial convolutional filter implementations on FPGAs, optimizing around the structure of the DSP blocks to offer high throughput while maintaining the coefficient flexibility that other published architectures usually sacrifice. We show that it is possible to implement large filters for large 4K resolution image frames at frame rates of 30–60 FPS, while maintaining functional flexibility

    Maximizing CNN Accelerator Efficiency Through Resource Partitioning

    Full text link
    Convolutional neural networks (CNNs) are revolutionizing machine learning, but they present significant computational challenges. Recently, many FPGA-based accelerators have been proposed to improve the performance and efficiency of CNNs. Current approaches construct a single processor that computes the CNN layers one at a time; the processor is optimized to maximize the throughput at which the collection of layers is computed. However, this approach leads to inefficient designs because the same processor structure is used to compute CNN layers of radically varying dimensions. We present a new CNN accelerator paradigm and an accompanying automated design methodology that partitions the available FPGA resources into multiple processors, each of which is tailored for a different subset of the CNN convolutional layers. Using the same FPGA resources as a single large processor, multiple smaller specialized processors increase computational efficiency and lead to a higher overall throughput. Our design methodology achieves 3.8x higher throughput than the state-of-the-art approach on evaluating the popular AlexNet CNN on a Xilinx Virtex-7 FPGA. For the more recent SqueezeNet and GoogLeNet, the speedups are 2.2x and 2.0x

    A Micro Power Hardware Fabric for Embedded Computing

    Get PDF
    Field Programmable Gate Arrays (FPGAs) mitigate many of the problemsencountered with the development of ASICs by offering flexibility, faster time-to-market, and amortized NRE costs, among other benefits. While FPGAs are increasingly being used for complex computational applications such as signal and image processing, networking, and cryptology, they are far from ideal for these tasks due to relatively high power consumption and silicon usage overheads compared to direct ASIC implementation. A reconfigurable device that exhibits ASIC-like power characteristics and FPGA-like costs and tool support is desirable to fill this void. In this research, a parameterized, reconfigurable fabric model named as domain specific fabric (DSF) is developed that exhibits ASIC-like power characteristics for Digital Signal Processing (DSP) style applications. Using this model, the impact of varying different design parameters on power and performance has been studied. Different optimization techniques like local search and simulated annealing are used to determine the appropriate interconnect for a specific set of applications. A design space exploration tool has been developed to automate and generate a tailored architectural instance of the fabric.The fabric has been synthesized on 160 nm cell-based ASIC fabrication process from OKI and 130 nm from IBM. A detailed power-performance analysis has been completed using signal and image processing benchmarks from the MediaBench benchmark suite and elsewhere with comparisons to other hardware and software implementations. The optimized fabric implemented using the 130 nm process yields energy within 3X of a direct ASIC implementation, 330X better than a Virtex-II Pro FPGA and 2016X better than an Intel XScale processor
    corecore