32 research outputs found

    Least-Squares Covariance Matrix Adjustment

    Get PDF
    We consider the problem of finding the smallest adjustment to a given symmetric n×nn \times n matrix, as measured by the Euclidean or Frobenius norm, so that it satisfies some given linear equalities and inequalities, and in addition is positive semidefinite. This least-squares covariance adjustment problem is a convex optimization problem, and can be efficiently solved using standard methods when the number of variables (i.e., entries in the matrix) is modest, say, under 10001000. Since the number of variables is n(n+1)/2n(n+1)/2, this corresponds to a limit around n=45n=45. Malick [{\it SIAM J. Matrix Anal.\ Appl.,} 26 (2005), pp. 272--284] studies a closely related problem and calls it the semidefinite least-squares problem. In this paper we formulate a dual problem that has no matrix inequality or matrix variables, and a number of (scalar) variables equal to the number of equality and inequality constraints in the original least-squares covariance adjustment problem. This dual problem allows us to solve far larger least-squares covariance adjustment problems than would be possible using standard methods. Assuming a modest number of constraints, problems with n=1000n=1000 are readily solved by the dual method. The dual method coincides with the dual method proposed by Malick when there are no inequality constraints and can be obtained as an extension of his dual method when there are inequality constraints. Using the dual problem, we show that in many cases the optimal solution is a low rank update of the original matrix. When the original matrix has structure, such as sparsity, this observation allows us to solve very large least-squares covariance adjustment problems

    An Efficient Dual Approach to Distance Metric Learning

    Full text link
    Distance metric learning is of fundamental interest in machine learning because the distance metric employed can significantly affect the performance of many learning methods. Quadratic Mahalanobis metric learning is a popular approach to the problem, but typically requires solving a semidefinite programming (SDP) problem, which is computationally expensive. Standard interior-point SDP solvers typically have a complexity of O(D6.5)O(D^{6.5}) (with DD the dimension of input data), and can thus only practically solve problems exhibiting less than a few thousand variables. Since the number of variables is D(D+1)/2D (D+1) / 2 , this implies a limit upon the size of problem that can practically be solved of around a few hundred dimensions. The complexity of the popular quadratic Mahalanobis metric learning approach thus limits the size of problem to which metric learning can be applied. Here we propose a significantly more efficient approach to the metric learning problem based on the Lagrange dual formulation of the problem. The proposed formulation is much simpler to implement, and therefore allows much larger Mahalanobis metric learning problems to be solved. The time complexity of the proposed method is O(D3)O (D ^ 3) , which is significantly lower than that of the SDP approach. Experiments on a variety of datasets demonstrate that the proposed method achieves an accuracy comparable to the state-of-the-art, but is applicable to significantly larger problems. We also show that the proposed method can be applied to solve more general Frobenius-norm regularized SDP problems approximately

    Worst-Case Linear Discriminant Analysis as Scalable Semidefinite Feasibility Problems

    Full text link
    In this paper, we propose an efficient semidefinite programming (SDP) approach to worst-case linear discriminant analysis (WLDA). Compared with the traditional LDA, WLDA considers the dimensionality reduction problem from the worst-case viewpoint, which is in general more robust for classification. However, the original problem of WLDA is non-convex and difficult to optimize. In this paper, we reformulate the optimization problem of WLDA into a sequence of semidefinite feasibility problems. To efficiently solve the semidefinite feasibility problems, we design a new scalable optimization method with quasi-Newton methods and eigen-decomposition being the core components. The proposed method is orders of magnitude faster than standard interior-point based SDP solvers. Experiments on a variety of classification problems demonstrate that our approach achieves better performance than standard LDA. Our method is also much faster and more scalable than standard interior-point SDP solvers based WLDA. The computational complexity for an SDP with mm constraints and matrices of size dd by dd is roughly reduced from O(m3+md3+m2d2)\mathcal{O}(m^3+md^3+m^2d^2) to O(d3)\mathcal{O}(d^3) (m>dm>d in our case).Comment: 14 page

    Forecasting People Trajectories and Head Poses by Jointly Reasoning on Tracklets and Vislets

    Full text link
    In this work, we explore the correlation between people trajectories and their head orientations. We argue that people trajectory and head pose forecasting can be modelled as a joint problem. Recent approaches on trajectory forecasting leverage short-term trajectories (aka tracklets) of pedestrians to predict their future paths. In addition, sociological cues, such as expected destination or pedestrian interaction, are often combined with tracklets. In this paper, we propose MiXing-LSTM (MX-LSTM) to capture the interplay between positions and head orientations (vislets) thanks to a joint unconstrained optimization of full covariance matrices during the LSTM backpropagation. We additionally exploit the head orientations as a proxy for the visual attention, when modeling social interactions. MX-LSTM predicts future pedestrians location and head pose, increasing the standard capabilities of the current approaches on long-term trajectory forecasting. Compared to the state-of-the-art, our approach shows better performances on an extensive set of public benchmarks. MX-LSTM is particularly effective when people move slowly, i.e. the most challenging scenario for all other models. The proposed approach also allows for accurate predictions on a longer time horizon.Comment: Accepted at IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2019. arXiv admin note: text overlap with arXiv:1805.0065

    Ridge Estimation of Inverse Covariance Matrices from High-Dimensional Data

    Full text link
    We study ridge estimation of the precision matrix in the high-dimensional setting where the number of variables is large relative to the sample size. We first review two archetypal ridge estimators and note that their utilized penalties do not coincide with common ridge penalties. Subsequently, starting from a common ridge penalty, analytic expressions are derived for two alternative ridge estimators of the precision matrix. The alternative estimators are compared to the archetypes with regard to eigenvalue shrinkage and risk. The alternatives are also compared to the graphical lasso within the context of graphical modeling. The comparisons may give reason to prefer the proposed alternative estimators
    corecore