91,587 research outputs found

    Robust Signal Restoration and Local Estimation of Image Structure

    Get PDF
    A class of nonlinear regression filters based on robust theory is introduced. The goal of the filtering is to restore the shape and preserve the details of the original noise-free signal, while effectively attenuating both impulsive and nonimpulsive noise. The proposed filters are based on robust Least Trimmed Squares estimation, where very deviating samples do not contribute to the final output. Furthermore, if there is more than one statistical population present in the processing window the filter is very likely to select adaptively the samples that represent the majority and uses them for computing the output. We apply the regression filters on geometric signal shapes which can be found, for example, in range images. The proposed methods are also useful for extracting the trend of the signal without losing important amplitude information. We show experimental results on restoration of the original signal shape using real and synthetic data and both impulsive and nonimpulsive noise. In addition, we apply the robust approach for describing local image structure. We use the method for estimating spatial properties of the image in a local neighborhood. Such properties can be used for example, as a uniformity predicate in the segmentation phase of an image understanding task. The emphasis is on producing reliable results even if the assumptions on noise, data and model are not completely valid. The experimental results provide information about the validity of those assumptions. Image description results are shown using synthetic and real data, various signal shapes and impulsive and nonimpulsive noise

    Robust convex optimisation techniques for autonomous vehicle vision-based navigation

    Get PDF
    This thesis investigates new convex optimisation techniques for motion and pose estimation. Numerous computer vision problems can be formulated as optimisation problems. These optimisation problems are generally solved via linear techniques using the singular value decomposition or iterative methods under an L2 norm minimisation. Linear techniques have the advantage of offering a closed-form solution that is simple to implement. The quantity being minimised is, however, not geometrically or statistically meaningful. Conversely, L2 algorithms rely on iterative estimation, where a cost function is minimised using algorithms such as Levenberg-Marquardt, Gauss-Newton, gradient descent or conjugate gradient. The cost functions involved are geometrically interpretable and can statistically be optimal under an assumption of Gaussian noise. However, in addition to their sensitivity to initial conditions, these algorithms are often slow and bear a high probability of getting trapped in a local minimum or producing infeasible solutions, even for small noise levels. In light of the above, in this thesis we focus on developing new techniques for finding solutions via a convex optimisation framework that are globally optimal. Presently convex optimisation techniques in motion estimation have revealed enormous advantages. Indeed, convex optimisation ensures getting a global minimum, and the cost function is geometrically meaningful. Moreover, robust optimisation is a recent approach for optimisation under uncertain data. In recent years the need to cope with uncertain data has become especially acute, particularly where real-world applications are concerned. In such circumstances, robust optimisation aims to recover an optimal solution whose feasibility must be guaranteed for any realisation of the uncertain data. Although many researchers avoid uncertainty due to the added complexity in constructing a robust optimisation model and to lack of knowledge as to the nature of these uncertainties, and especially their propagation, in this thesis robust convex optimisation, while estimating the uncertainties at every step is investigated for the motion estimation problem. First, a solution using convex optimisation coupled to the recursive least squares (RLS) algorithm and the robust H filter is developed for motion estimation. In another solution, uncertainties and their propagation are incorporated in a robust L convex optimisation framework for monocular visual motion estimation. In this solution, robust least squares is combined with a second order cone program (SOCP). A technique to improve the accuracy and the robustness of the fundamental matrix is also investigated in this thesis. This technique uses the covariance intersection approach to fuse feature location uncertainties, which leads to more consistent motion estimates. Loop-closure detection is crucial in improving the robustness of navigation algorithms. In practice, after long navigation in an unknown environment, detecting that a vehicle is in a location it has previously visited gives the opportunity to increase the accuracy and consistency of the estimate. In this context, we have developed an efficient appearance-based method for visual loop-closure detection based on the combination of a Gaussian mixture model with the KD-tree data structure. Deploying this technique for loop-closure detection, a robust L convex posegraph optimisation solution for unmanned aerial vehicle (UAVs) monocular motion estimation is introduced as well. In the literature, most proposed solutions formulate the pose-graph optimisation as a least-squares problem by minimising a cost function using iterative methods. In this work, robust convex optimisation under the L norm is adopted, which efficiently corrects the UAV’s pose after loop-closure detection. To round out the work in this thesis, a system for cooperative monocular visual motion estimation with multiple aerial vehicles is proposed. The cooperative motion estimation employs state-of-the-art approaches for optimisation, individual motion estimation and registration. Three-view geometry algorithms in a convex optimisation framework are deployed on board the monocular vision system for each vehicle. In addition, vehicle-to-vehicle relative pose estimation is performed with a novel robust registration solution in a global optimisation framework. In parallel, and as a complementary solution for the relative pose, a robust non-linear H solution is designed as well to fuse measurements from the UAVs’ on-board inertial sensors with the visual estimates. The suggested contributions have been exhaustively evaluated over a number of real-image data experiments in the laboratory using monocular vision systems and range imaging devices. In this thesis, we propose several solutions towards the goal of robust visual motion estimation using convex optimisation. We show that the convex optimisation framework may be extended to include uncertainty information, to achieve robust and optimal solutions. We observed that convex optimisation is a practical and very appealing alternative to linear techniques and iterative methods

    Robust Camera Location Estimation by Convex Programming

    Full text link
    33D structure recovery from a collection of 22D images requires the estimation of the camera locations and orientations, i.e. the camera motion. For large, irregular collections of images, existing methods for the location estimation part, which can be formulated as the inverse problem of estimating nn locations t1,t2,,tn\mathbf{t}_1, \mathbf{t}_2, \ldots, \mathbf{t}_n in R3\mathbb{R}^3 from noisy measurements of a subset of the pairwise directions titjtitj\frac{\mathbf{t}_i - \mathbf{t}_j}{\|\mathbf{t}_i - \mathbf{t}_j\|}, are sensitive to outliers in direction measurements. In this paper, we firstly provide a complete characterization of well-posed instances of the location estimation problem, by presenting its relation to the existing theory of parallel rigidity. For robust estimation of camera locations, we introduce a two-step approach, comprised of a pairwise direction estimation method robust to outliers in point correspondences between image pairs, and a convex program to maintain robustness to outlier directions. In the presence of partially corrupted measurements, we empirically demonstrate that our convex formulation can even recover the locations exactly. Lastly, we demonstrate the utility of our formulations through experiments on Internet photo collections.Comment: 10 pages, 6 figures, 3 table

    Stable Camera Motion Estimation Using Convex Programming

    Full text link
    We study the inverse problem of estimating n locations t1,...,tnt_1, ..., t_n (up to global scale, translation and negation) in RdR^d from noisy measurements of a subset of the (unsigned) pairwise lines that connect them, that is, from noisy measurements of ±(titj)/titj\pm (t_i - t_j)/\|t_i - t_j\| for some pairs (i,j) (where the signs are unknown). This problem is at the core of the structure from motion (SfM) problem in computer vision, where the tit_i's represent camera locations in R3R^3. The noiseless version of the problem, with exact line measurements, has been considered previously under the general title of parallel rigidity theory, mainly in order to characterize the conditions for unique realization of locations. For noisy pairwise line measurements, current methods tend to produce spurious solutions that are clustered around a few locations. This sensitivity of the location estimates is a well-known problem in SfM, especially for large, irregular collections of images. In this paper we introduce a semidefinite programming (SDP) formulation, specially tailored to overcome the clustering phenomenon. We further identify the implications of parallel rigidity theory for the location estimation problem to be well-posed, and prove exact (in the noiseless case) and stable location recovery results. We also formulate an alternating direction method to solve the resulting semidefinite program, and provide a distributed version of our formulation for large numbers of locations. Specifically for the camera location estimation problem, we formulate a pairwise line estimation method based on robust camera orientation and subspace estimation. Lastly, we demonstrate the utility of our algorithm through experiments on real images.Comment: 40 pages, 12 figures, 6 tables; notation and some unclear parts updated, some typos correcte

    Learning how to be robust: Deep polynomial regression

    Get PDF
    Polynomial regression is a recurrent problem with a large number of applications. In computer vision it often appears in motion analysis. Whatever the application, standard methods for regression of polynomial models tend to deliver biased results when the input data is heavily contaminated by outliers. Moreover, the problem is even harder when outliers have strong structure. Departing from problem-tailored heuristics for robust estimation of parametric models, we explore deep convolutional neural networks. Our work aims to find a generic approach for training deep regression models without the explicit need of supervised annotation. We bypass the need for a tailored loss function on the regression parameters by attaching to our model a differentiable hard-wired decoder corresponding to the polynomial operation at hand. We demonstrate the value of our findings by comparing with standard robust regression methods. Furthermore, we demonstrate how to use such models for a real computer vision problem, i.e., video stabilization. The qualitative and quantitative experiments show that neural networks are able to learn robustness for general polynomial regression, with results that well overpass scores of traditional robust estimation methods.Comment: 18 pages, conferenc

    Robust and Efficient Recovery of Rigid Motion from Subspace Constraints Solved using Recursive Identification of Nonlinear Implicit Systems

    Get PDF
    The problem of estimating rigid motion from projections may be characterized using a nonlinear dynamical system, composed of the rigid motion transformation and the perspective map. The time derivative of the output of such a system, which is also called the "motion field", is bilinear in the motion parameters, and may be used to specify a subspace constraint on either the direction of translation or the inverse depth of the observed points. Estimating motion may then be formulated as an optimization task constrained on such a subspace. Heeger and Jepson [5], who first introduced this constraint, solve the optimization task using an extensive search over the possible directions of translation. We reformulate the optimization problem in a systems theoretic framework as the the identification of a dynamic system in exterior differential form with parameters on a differentiable manifold, and use techniques which pertain to nonlinear estimation and identification theory to perform the optimization task in a principled manner. The general technique for addressing such identification problems [14] has been used successfully in addressing other problems in computational vision [13, 12]. The application of the general method [14] results in a recursive and pseudo-optimal solution of the motion problem, which has robustness properties far superior to other existing techniques we have implemented. By releasing the constraint that the visible points lie in front of the observer, we may explain some psychophysical effects on the nonrigid percept of rigidly moving shapes. Experiments on real and synthetic image sequences show very promising results in terms of robustness, accuracy and computational efficiency

    Multi-Scale 3D Scene Flow from Binocular Stereo Sequences

    Full text link
    Scene flow methods estimate the three-dimensional motion field for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation. This paper describes an alternative formulation for dense scene flow estimation that provides reliable results using only two cameras by fusing stereo and optical flow estimation into a single coherent framework. Internally, the proposed algorithm generates probability distributions for optical flow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene flow than previous methods allow. To handle the aperture problems inherent in the estimation of optical flow and disparity, a multi-scale method along with a novel region-based technique is used within a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization – two problems commonly associated with the basic multi-scale approaches. Experiments with synthetic and real test data demonstrate the strength of the proposed approach.National Science Foundation (CNS-0202067, IIS-0208876); Office of Naval Research (N00014-03-1-0108
    corecore