1,980 research outputs found

    Lease based addressing for event-driven wireless sensor networks

    Full text link
    Sensor Networks have applications in diverse fields. They can be deployed for habitat modeling, temperature monitoring and industrial sensing. They also find applications in battlefield awareness and emergency (first) response situations. While unique addressing is not a requirement of many data collecting applications of wireless sensor networks it is vital for the success of applications such as emergency response. Data that cannot be associated with a specific node becomes useless in such situations. In this work we propose an addressing mechanism for event-driven wireless sensor networks. The proposed scheme eliminates the need for network wide Duplicate Address Detection (DAD) and enables reuse of addresses. <br /

    Address reuse in wireless sensor networks

    Full text link
    Sensor Networks have applications in diverse fields. While unique addressing is not a requirement of many data collecting applications of wireless sensor networks, it is vital for the success of applications such as emergency response. Data that cannot be associated with a specific node becomes useless in such situations. In this work we propose a dynamic addressing mechanism for wireless sensor networks. The scheme enables successful reuse of addresses in event-driven wireless sensor networks. It also eliminates the need for network-wide Duplicate Address Detection (DAD) to ensure uniqueness of network level addresses.<br /

    Supporting service discovery, querying and interaction in ubiquitous computing environments.

    Get PDF
    In this paper, we contend that ubiquitous computing environments will be highly heterogeneous, service rich domains. Moreover, future applications will consequently be required to interact with multiple, specialised service location and interaction protocols simultaneously. We argue that existing service discovery techniques do not provide sufficient support to address the challenges of building applications targeted to these emerging environments. This paper makes a number of contributions. Firstly, using a set of short ubiquitous computing scenarios we identify several key limitations of existing service discovery approaches that reduce their ability to support ubiquitous computing applications. Secondly, we present a detailed analysis of requirements for providing effective support in this domain. Thirdly, we provide the design of a simple extensible meta-service discovery architecture that uses database techniques to unify service discovery protocols and addresses several of our key requirements. Lastly, we examine the lessons learnt through the development of a prototype implementation of our architecture

    Service-Oriented Device Integration for Ubiquitous Ambient Assisted Living Environments

    Get PDF
    As a result of the increment of population in countries of Europe, a lot of efforts from European Authorities are coming from. In our research we want to bring forward a suite of developments related to build a ubiquitous AAL (Ambient Assisted Living) environment. We consider that recent approaches are based on ad-hoc technologies so its application is in this context isolated just in one domain of application. Our approach addresses to a reliable services platform for heterogeneous devices integration. On this basis we want to consider as well, the underlying benefits that a Service-oriented platform is giving to us in our Ambient Assisted Living Applications.Ministerio de Educación y Ciencia TSI2006-13390-C02-02Junta de Andalucía TIC-2141Ministerio de Industria, Turismo y Comercio TSI-020400-2008-11

    Software infrastructure for wireless sensor and actuator networks

    Full text link
    In the development of large ad-hoc Wireless Sensor and Actuator Agent Networks (SANETS), a multitude of disparate problems are faced. In order for these networks to function, software must be able to effectively manage: unreliable dynamic distributed communication, the power constraints of un-wired devices, failure of hardware devices in hostile environments and the remote allocation of distributed processing tasks throughout the network. The solutions to these problems must be solved in a highly scalable manner. The paper describes the process of analysis of the requirements and presents a design of a service-oriented software infrastructure (middleware) solution for scalable ad-hoc networks, in a context of a system made of mobile sensors and actuators. © 2011 IEEE

    Implementation of Middleware for Internet of Things in Asset Tracking Applications: In-lining Approach

    Get PDF
    ThesisInternet of Things (IoT) is a concept that involves giving objects a digital identity and limited artificial intelligence, which helps the objects to be interactive, process data, make decisions, communicate and react to events virtually with minimum human intervention. IoT is intensified by advancements in hardware and software engineering and promises to close the gap that exists between the physical and digital worlds. IoT is paving ways to address complex phenomena, through designing and implementation of intelligent systems that can monitor phenomena, perform real-time data interpretation, react to events, and swiftly communicate observations. The primary goal of IoT is ubiquitous computing using wireless sensors and communication protocols such as Bluetooth, Wireless Fidelity (Wi-Fi), ZigBee and General Packet Radio Service (GPRS). Insecurity, of assets and lives, is a problem around the world. One application area of IoT is tracking and monitoring; it could therefore be used to solve asset insecurity. A preliminary investigation revealed that security systems in place at Central University of Technology, Free State (CUT) are disjointed; they do not instantaneously and intelligently conscientize security personnel about security breaches using real time messages. As a result, many assets have been stolen, particularly laptops. The main objective of this research was to prove that a real-life application built over a generic IoT architecture that innovatively and intelligently integrates: (1) wireless sensors; (2) radio frequency identification (RFID) tags and readers; (3) fingerprint readers; and (4) mobile phones, can be used to dispel laptop theft. To achieve this, the researcher developed a system, using the heterogeneous devices mentioned above and a middleware that harnessed their unique capabilities to bring out the full potential of IoT in intelligently curbing laptop theft. The resulting system has the ability to: (1) monitor the presence of a laptop using RFID reader that pro-actively interrogates a passive tag attached to the laptop; (2) detect unauthorized removal of a laptop under monitoring; (3) instantly communicate security violations via cell phones; and (4) use Windows location sensors to track the position of a laptop using Googlemaps. The system also manages administrative tasks such as laptop registration, assignment and withdrawal which used to be handled manually. Experiments conducted using the resulting system prototype proved the hypothesis outlined for this research

    Context-sensitive authorization for asynchronous communications

    Get PDF
    Main requirement of recent computing environments, like mobile and then ubiquitous computing, is to adapt applications to context. On the other hand, access control generally trust users once they have authenticated, despite the fact that they may reach unauthorized situations. We analyse how dynamic information can be used to improve security in the authorization process, especially in the case of asynchronous communications, like messaging or eventing. We experiment and validate our approach using context as an authorization factor for eventing in Web service for device (like UPnP or DPWS)
    corecore