4 research outputs found

    Premise Selection for Mathematics by Corpus Analysis and Kernel Methods

    Get PDF
    Smart premise selection is essential when using automated reasoning as a tool for large-theory formal proof development. A good method for premise selection in complex mathematical libraries is the application of machine learning to large corpora of proofs. This work develops learning-based premise selection in two ways. First, a newly available minimal dependency analysis of existing high-level formal mathematical proofs is used to build a large knowledge base of proof dependencies, providing precise data for ATP-based re-verification and for training premise selection algorithms. Second, a new machine learning algorithm for premise selection based on kernel methods is proposed and implemented. To evaluate the impact of both techniques, a benchmark consisting of 2078 large-theory mathematical problems is constructed,extending the older MPTP Challenge benchmark. The combined effect of the techniques results in a 50% improvement on the benchmark over the Vampire/SInE state-of-the-art system for automated reasoning in large theories.Comment: 26 page

    MaLeS: A Framework for Automatic Tuning of Automated Theorem Provers

    Full text link
    MaLeS is an automatic tuning framework for automated theorem provers. It provides solutions for both the strategy finding as well as the strategy scheduling problem. This paper describes the tool and the methods used in it, and evaluates its performance on three automated theorem provers: E, LEO-II and Satallax. An evaluation on a subset of the TPTP library problems shows that on average a MaLeS-tuned prover solves 8.67% more problems than the prover with its default settings

    Learning2Reason

    No full text
    Contains fulltext : 91997.pdf (publisher's version ) (Closed access
    corecore