28 research outputs found

    Mobility-Aware Computation Offloading for Swarm Robotics using Deep Reinforcement Learning

    Full text link
    Swarm robotics is envisioned to automate a large number of dirty, dangerous, and dull tasks. Robots have limited energy, computation capability, and communication resources. Therefore, current swarm robotics have a small number of robots, which can only provide limited spatio-temporal information. In this paper, we propose to leverage the mobile edge computing to alleviate the computation burden. We develop an effective solution based on a mobility-aware deep reinforcement learning model at the edge server side for computing scheduling and resource. Our results show that the proposed approach can meet delay requirements and guarantee computation precision by using minimum robot energy

    Efficient Mobile Edge Computing for Mobile Internet of Thing in 5G Networks

    Get PDF
    We study the off-line efficient mobile edge computing (EMEC) problem for a joint computing to process a task both locally and remotely with the objective of minimizing the finishing time. When computing remotely, the time will include the communication and computing time. We first describe the time model, formulate EMEC, prove NP-completeness of EMEC, and show the lower bound. We then provide an integer linear programming (ILP) based algorithm to achieve the optimal solution and give results for small-scale cases. A fully polynomial-time approximation scheme (FPTAS), named Approximation Partition (AP), is provided through converting ILP to the subset sum problem. Numerical results show that both the total data length and the movement have great impact on the time for mobile edge computing. Numerical results also demonstrate that our AP algorithm obtain the finishing time, which is close to the optimal solution

    Resource offload consolidation based on deep-reinforcement learning approach in cyber-physical systems.

    Get PDF
    In cyber-physical systems, it is advantageous to leverage cloud with edge resources to distribute the workload for processing and computing user data at the point of generation. Services offered by cloud are not flexible enough against variations in the size of underlying data, which leads to increased latency, violation of deadline and higher cost. On the other hand, resolving above-mentioned issues with edge devices with limited resources is also challenging. In this work, a novel reinforcement learning algorithm, Capacity-Cost Ratio-Reinforcement Learning (CCR-RL), is proposed which considers both resource utilization and cost for the target cyber-physical systems. In CCR-RL, the task offloading decision is made considering data arrival rate, edge device computation power, and underlying transmission capacity. Then, a deep learning model is created to allocate resources based on the underlying communication and computation rate. Moreover, new algorithms are proposed to regulate the allocation of communication and computation resources for the workload among edge devices and edge servers. The simulation results demonstrate that the proposed method can achieve a minimal latency and a reduced processing cost compared to the state-of-the-art schemes

    Joint Trajectory-Task-Cache Optimization in UAV-Enabled Mobile Edge Networks for Cyber-Physical System

    Get PDF
    This paper studies an unmanned aerial vehicle (UAV)-enabled mobile edge network for Cyber-Physical System (CPS), where UAV with fixed-wing or rotary-wing is dispatched to provide communication and mobile edge computing (MEC) services to ground terminals (GTs). To minimize the energy consumption so as to extend the endurance of the UAV, we intend to jointly optimize its 3D trajectory and the task-cache strategies among GTs to save the energies spent on flight propulsion and GT tasks. Such joint trajectory-task-cache problem is difficult to be optimally solved, as it is non-convex and involves multiple constraints. To tackle this problem, we reformulate the optimizing of task offloading and cache into two tractable linear program (LP) problems, and the optimizing of UAV trajectory into three convex Quadratically Constrained Quadratically Program (QCQP) problems on horizontal trajectory, vertical trajectory and flight time of the UAV respectively. Then a block coordinate descent algorithm is proposed to iteratively solve the formed sub-problems through a successive convex optimization (SCO) process. A high-quality sub-optimal solution to the joint problem then will be obtained, after the algorithm converging to a prescribed accuracy. The numerical results show the proposed solution significantly outperforms the baseline solution
    corecore