4 research outputs found

    Online weight estimation in a robotic gripper arm

    Get PDF
    This paper presents a novel methodology for online, fast and accurate weight estimation technique in a robotic gripper arm. The laboratory setup is inspired from several real life applications of weight estimation in moving cranes, e.g. loading containers in a shipyard, iron scrapping in steel industry, etc. The weight needs to be estimated within a specified time interval and within a tolerance interval for accuracy. The results indicate that the proposed method is suitable for this kind of application and an improvement of 30% has been achieved compared to the current state of work

    Adaptive Critic Neural Network-Based Object Grasping Control using a Three-finger Gripper

    Get PDF
    Grasping of objects has been a challenging task for robots. The complex grasping task can be defined as object contact control and manipulation subtasks. In this paper, object contact control subtask is defined as the ability to follow a trajectory accurately by the fingers of a gripper. The object manipulation subtask is defined in terms of maintaining a predefined applied force by the fingers on the object. A sophisticated controller is necessary since the process of grasping an object without a priori knowledge of the object\u27s size, texture, softness, gripper, and contact dynamics is rather difficult. Moreover, the object has to be secured accurately and considerably fast without damaging it. Since the gripper, contact dynamics, and the object properties are not typically known beforehand, an adaptive critic neural network (NN)-based hybrid position/force control scheme is introduced. The feedforward action generating NN in the adaptive critic NN controller compensates the nonlinear gripper and contact dynamics. The learning of the action generating NN is performed on-line based on a critic NN output signal. The controller ensures that a three-finger gripper tracks a desired trajectory while applying desired forces on the object for manipulation. Novel NN weight tuning updates are derived for the action generating and critic NNs so that Lyapunov-based stability analysis can be shown. Simulation results demonstrate that the proposed scheme successfully allows fingers of a gripper to secure objects without the knowledge of the underlying gripper and contact dynamics of the object compared to conventional schemes
    corecore