21,871 research outputs found

    Optimizing E-Commerce Product Classification Using Transfer Learning

    Get PDF
    The global e-commerce market is snowballing at a rate of 23% per year. In 2017, retail e-commerce users were 1.66 billion and sales worldwide amounted to 2.3 trillion US dollars, and e-retail revenues are projected to grow to 4.88 trillion USD in 2021. With the immense popularity that e-commerce has gained over past few years comes the responsibility to deliver relevant results to provide rich user experience. In order to do this, it is essential that the products on the ecommerce website be organized correctly into their respective categories. Misclassification of products leads to irrelevant results for users which not just reflects badly on the website, it could also lead to lost customers. With ecommerce sites nowadays providing their portal as a platform for third party merchants to sell their products as well, maintaining a consistency in product categorization becomes difficult. Therefore, automating this process could be of great utilization. This task of automation done on the basis of text could lead to discrepancies since the website itself, its various merchants, and users, all could use different terminologies for a product and its category. Thus, using images becomes a plausible solution for this problem. Dealing with images can best be done using deep learning in the form of convolutional neural networks. This is a computationally expensive task, and in order to keep the accuracy of a traditional convolutional neural network while reducing the hours it takes for the model to train, this project aims at using a technique called transfer learning. Transfer learning refers to sharing the knowledge gained from one task for another where new model does not need to be trained from scratch in order to reduce the time it takes for training. This project aims at using various product images belonging to five categories from an ecommerce platform and developing an algorithm that can accurately classify products in their respective categories while taking as less time as possible. The goal is to first test the performance of transfer learning against traditional convolutional networks. Then the next step is to apply transfer learning to the downloaded dataset and assess its performance on the accuracy and time taken to classify test data that the model has never seen before

    An Evasion and Counter-Evasion Study in Malicious Websites Detection

    Full text link
    Malicious websites are a major cyber attack vector, and effective detection of them is an important cyber defense task. The main defense paradigm in this regard is that the defender uses some kind of machine learning algorithms to train a detection model, which is then used to classify websites in question. Unlike other settings, the following issue is inherent to the problem of malicious websites detection: the attacker essentially has access to the same data that the defender uses to train its detection models. This 'symmetry' can be exploited by the attacker, at least in principle, to evade the defender's detection models. In this paper, we present a framework for characterizing the evasion and counter-evasion interactions between the attacker and the defender, where the attacker attempts to evade the defender's detection models by taking advantage of this symmetry. Within this framework, we show that an adaptive attacker can make malicious websites evade powerful detection models, but proactive training can be an effective counter-evasion defense mechanism. The framework is geared toward the popular detection model of decision tree, but can be adapted to accommodate other classifiers

    Ontology Driven Web Extraction from Semi-structured and Unstructured Data for B2B Market Analysis

    No full text
    The Market Blended Insight project1 has the objective of improving the UK business to business marketing performance using the semantic web technologies. In this project, we are implementing an ontology driven web extraction and translation framework to supplement our backend triple store of UK companies, people and geographical information. It deals with both the semi-structured data and the unstructured text on the web, to annotate and then translate the extracted data according to the backend schema

    Data-driven Job Search Engine Using Skills and Company Attribute Filters

    Full text link
    According to a report online, more than 200 million unique users search for jobs online every month. This incredibly large and fast growing demand has enticed software giants such as Google and Facebook to enter this space, which was previously dominated by companies such as LinkedIn, Indeed and CareerBuilder. Recently, Google released their "AI-powered Jobs Search Engine", "Google For Jobs" while Facebook released "Facebook Jobs" within their platform. These current job search engines and platforms allow users to search for jobs based on general narrow filters such as job title, date posted, experience level, company and salary. However, they have severely limited filters relating to skill sets such as C++, Python, and Java and company related attributes such as employee size, revenue, technographics and micro-industries. These specialized filters can help applicants and companies connect at a very personalized, relevant and deeper level. In this paper we present a framework that provides an end-to-end "Data-driven Jobs Search Engine". In addition, users can also receive potential contacts of recruiters and senior positions for connection and networking opportunities. The high level implementation of the framework is described as follows: 1) Collect job postings data in the United States, 2) Extract meaningful tokens from the postings data using ETL pipelines, 3) Normalize the data set to link company names to their specific company websites, 4) Extract and ranking the skill sets, 5) Link the company names and websites to their respective company level attributes with the EVERSTRING Company API, 6) Run user-specific search queries on the database to identify relevant job postings and 7) Rank the job search results. This framework offers a highly customizable and highly targeted search experience for end users.Comment: 8 pages, 10 figures, ICDM 201

    Recurrent Latent Variable Networks for Session-Based Recommendation

    Full text link
    In this work, we attempt to ameliorate the impact of data sparsity in the context of session-based recommendation. Specifically, we seek to devise a machine learning mechanism capable of extracting subtle and complex underlying temporal dynamics in the observed session data, so as to inform the recommendation algorithm. To this end, we improve upon systems that utilize deep learning techniques with recurrently connected units; we do so by adopting concepts from the field of Bayesian statistics, namely variational inference. Our proposed approach consists in treating the network recurrent units as stochastic latent variables with a prior distribution imposed over them. On this basis, we proceed to infer corresponding posteriors; these can be used for prediction and recommendation generation, in a way that accounts for the uncertainty in the available sparse training data. To allow for our approach to easily scale to large real-world datasets, we perform inference under an approximate amortized variational inference (AVI) setup, whereby the learned posteriors are parameterized via (conventional) neural networks. We perform an extensive experimental evaluation of our approach using challenging benchmark datasets, and illustrate its superiority over existing state-of-the-art techniques
    corecore