6,255 research outputs found

    Selective Attention for Context-aware Neural Machine Translation

    Full text link
    Despite the progress made in sentence-level NMT, current systems still fall short at achieving fluent, good quality translation for a full document. Recent works in context-aware NMT consider only a few previous sentences as context and may not scale to entire documents. To this end, we propose a novel and scalable top-down approach to hierarchical attention for context-aware NMT which uses sparse attention to selectively focus on relevant sentences in the document context and then attends to key words in those sentences. We also propose single-level attention approaches based on sentence or word-level information in the context. The document-level context representation, produced from these attention modules, is integrated into the encoder or decoder of the Transformer model depending on whether we use monolingual or bilingual context. Our experiments and evaluation on English-German datasets in different document MT settings show that our selective attention approach not only significantly outperforms context-agnostic baselines but also surpasses context-aware baselines in most cases.Comment: Accepted at NAACL-HLT 201

    Labeled Memory Networks for Online Model Adaptation

    Full text link
    Augmenting a neural network with memory that can grow without growing the number of trained parameters is a recent powerful concept with many exciting applications. We propose a design of memory augmented neural networks (MANNs) called Labeled Memory Networks (LMNs) suited for tasks requiring online adaptation in classification models. LMNs organize the memory with classes as the primary key.The memory acts as a second boosted stage following a regular neural network thereby allowing the memory and the primary network to play complementary roles. Unlike existing MANNs that write to memory for every instance and use LRU based memory replacement, LMNs write only for instances with non-zero loss and use label-based memory replacement. We demonstrate significant accuracy gains on various tasks including word-modelling and few-shot learning. In this paper, we establish their potential in online adapting a batch trained neural network to domain-relevant labeled data at deployment time. We show that LMNs are better than other MANNs designed for meta-learning. We also found them to be more accurate and faster than state-of-the-art methods of retuning model parameters for adapting to domain-specific labeled data.Comment: Accepted at AAAI 2018, 8 page

    The Case for Learned Index Structures

    Full text link
    Indexes are models: a B-Tree-Index can be seen as a model to map a key to the position of a record within a sorted array, a Hash-Index as a model to map a key to a position of a record within an unsorted array, and a BitMap-Index as a model to indicate if a data record exists or not. In this exploratory research paper, we start from this premise and posit that all existing index structures can be replaced with other types of models, including deep-learning models, which we term learned indexes. The key idea is that a model can learn the sort order or structure of lookup keys and use this signal to effectively predict the position or existence of records. We theoretically analyze under which conditions learned indexes outperform traditional index structures and describe the main challenges in designing learned index structures. Our initial results show, that by using neural nets we are able to outperform cache-optimized B-Trees by up to 70% in speed while saving an order-of-magnitude in memory over several real-world data sets. More importantly though, we believe that the idea of replacing core components of a data management system through learned models has far reaching implications for future systems designs and that this work just provides a glimpse of what might be possible
    • …
    corecore