7,996 research outputs found

    Learning to Rank based on Analogical Reasoning

    Full text link
    Object ranking or "learning to rank" is an important problem in the realm of preference learning. On the basis of training data in the form of a set of rankings of objects represented as feature vectors, the goal is to learn a ranking function that predicts a linear order of any new set of objects. In this paper, we propose a new approach to object ranking based on principles of analogical reasoning. More specifically, our inference pattern is formalized in terms of so-called analogical proportions and can be summarized as follows: Given objects A,B,C,DA,B,C,D, if object AA is known to be preferred to BB, and CC relates to DD as AA relates to BB, then CC is (supposedly) preferred to DD. Our method applies this pattern as a main building block and combines it with ideas and techniques from instance-based learning and rank aggregation. Based on first experimental results for data sets from various domains (sports, education, tourism, etc.), we conclude that our approach is highly competitive. It appears to be specifically interesting in situations in which the objects are coming from different subdomains, and which hence require a kind of knowledge transfer.Comment: Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), 8 page

    Ranking relations using analogies in biological and information networks

    Get PDF
    Analogical reasoning depends fundamentally on the ability to learn and generalize about relations between objects. We develop an approach to relational learning which, given a set of pairs of objects S={A(1):B(1),A(2):B(2),…,A(N):B(N)}\mathbf{S}=\{A^{(1)}:B^{(1)},A^{(2)}:B^{(2)},\ldots,A^{(N)}:B ^{(N)}\}, measures how well other pairs A:B fit in with the set S\mathbf{S}. Our work addresses the following question: is the relation between objects A and B analogous to those relations found in S\mathbf{S}? Such questions are particularly relevant in information retrieval, where an investigator might want to search for analogous pairs of objects that match the query set of interest. There are many ways in which objects can be related, making the task of measuring analogies very challenging. Our approach combines a similarity measure on function spaces with Bayesian analysis to produce a ranking. It requires data containing features of the objects of interest and a link matrix specifying which relationships exist; no further attributes of such relationships are necessary. We illustrate the potential of our method on text analysis and information networks. An application on discovering functional interactions between pairs of proteins is discussed in detail, where we show that our approach can work in practice even if a small set of protein pairs is provided.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS321 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Accelerating Innovation Through Analogy Mining

    Full text link
    The availability of large idea repositories (e.g., the U.S. patent database) could significantly accelerate innovation and discovery by providing people with inspiration from solutions to analogous problems. However, finding useful analogies in these large, messy, real-world repositories remains a persistent challenge for either human or automated methods. Previous approaches include costly hand-created databases that have high relational structure (e.g., predicate calculus representations) but are very sparse. Simpler machine-learning/information-retrieval similarity metrics can scale to large, natural-language datasets, but struggle to account for structural similarity, which is central to analogy. In this paper we explore the viability and value of learning simpler structural representations, specifically, "problem schemas", which specify the purpose of a product and the mechanisms by which it achieves that purpose. Our approach combines crowdsourcing and recurrent neural networks to extract purpose and mechanism vector representations from product descriptions. We demonstrate that these learned vectors allow us to find analogies with higher precision and recall than traditional information-retrieval methods. In an ideation experiment, analogies retrieved by our models significantly increased people's likelihood of generating creative ideas compared to analogies retrieved by traditional methods. Our results suggest a promising approach to enabling computational analogy at scale is to learn and leverage weaker structural representations.Comment: KDD 201

    The 'what' and 'how' of learning in design, invited paper

    Get PDF
    Previous experiences hold a wealth of knowledge which we often take for granted and use unknowingly through our every day working lives. In design, those experiences can play a crucial role in the success or failure of a design project, having a great deal of influence on the quality, cost and development time of a product. But how can we empower computer based design systems to acquire this knowledge? How would we use such systems to support design? This paper outlines some of the work which has been carried out in applying and developing Machine Learning techniques to support the design activity; particularly in utilising previous designs and learning the design process
    • …
    corecore