3 research outputs found

    Learning to Race through Coordinate Descent Bayesian Optimisation

    Full text link
    In the automation of many kinds of processes, the observable outcome can often be described as the combined effect of an entire sequence of actions, or controls, applied throughout its execution. In these cases, strategies to optimise control policies for individual stages of the process might not be applicable, and instead the whole policy might have to be optimised at once. On the other hand, the cost to evaluate the policy's performance might also be high, being desirable that a solution can be found with as few interactions as possible with the real system. We consider the problem of optimising control policies to allow a robot to complete a given race track within a minimum amount of time. We assume that the robot has no prior information about the track or its own dynamical model, just an initial valid driving example. Localisation is only applied to monitor the robot and to provide an indication of its position along the track's centre axis. We propose a method for finding a policy that minimises the time per lap while keeping the vehicle on the track using a Bayesian optimisation (BO) approach over a reproducing kernel Hilbert space. We apply an algorithm to search more efficiently over high-dimensional policy-parameter spaces with BO, by iterating over each dimension individually, in a sequential coordinate descent-like scheme. Experiments demonstrate the performance of the algorithm against other methods in a simulated car racing environment.Comment: Accepted as conference paper for the 2018 IEEE International Conference on Robotics and Automation (ICRA

    Multi-Character Motion Retargeting for Large Scale Changes

    Get PDF

    Bayesian Optimisation for Planning under Uncertainty

    Get PDF
    Under an increasing demand for data to understand critical processes in our world, robots have become powerful tools to automatically gather data and interact with their environments. In this context, this thesis addresses planning problems where limited prior information leads to uncertainty about the outcomes of a robot's decisions. The methods are based on Bayesian optimisation (BO), which provides a framework to solve planning problems under uncertainty by means of probabilistic modelling. As a first contribution, the thesis provides a method to find energy-efficient paths over unknown terrains. The method applies a Gaussian process (GP) model to learn online how a robot's power consumption varies as a function of its configuration while moving over the terrain. BO is applied to optimise trajectories over the GP model being learnt so that they are informative and energetically efficient. The method was tested in experiments on simulated and physical environments. A second contribution addresses the problem of policy search in high-dimensional parameter spaces. To deal with high dimensionality the method combines BO with a coordinate-descent scheme that greatly improves BO's performance when compared to conventional approaches. The method was applied to optimise a control policy for a race car in a simulated environment and shown to outperform other optimisation approaches. Finally, the thesis provides two methods to address planning problems involving uncertainty in the inputs space. The first method is applied to actively learn terrain roughness models via proprioceptive sensing with a mobile robot under localisation uncertainty. Experiments demonstrate the method's performance in both simulations and a physical environment. The second method is derived for more general optimisation problems. In particular, this method is provided with theoretical guarantees and empirical performance comparisons against other approaches in simulated environments
    corecore