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Abstract

Under an increasing demand for data to understand critical processes in our world, robots have

become powerful tools to automatically gather data and interact with their environments. In this context,

this thesis addresses planning problems where limited prior information leads to uncertainty about the

outcomes of a robot’s decisions. The methods are based on Bayesian optimisation (BO), which provides

a framework to solve planning problems under uncertainty by means of probabilistic modelling.

As a first contribution, the thesis provides a method to find energy-efficient paths over unknown ter-

rains. The method applies a Gaussian process (GP) model to learn online how a robot’s power consump-

tion varies as a function of its configuration while moving over the terrain. BO is applied to optimise

trajectories over the GP model being learnt so that they are informative and energetically efficient. The

method was tested in experiments on simulated and physical environments.

A second contribution addresses the problem of policy search in high-dimensional parameter spaces.

To deal with high dimensionality the method combines BO with a coordinate-descent scheme that greatly

improves BO’s performance when compared to conventional approaches. The method was applied to

optimise a control policy for a race car in a simulated environment and shown to outperform other

optimisation approaches.

Finally, the thesis provides two methods to address planning problems involving uncertainty in the

inputs space. The first method is applied to actively learn terrain roughness models via propriocep-

tive sensing with a mobile robot under localisation uncertainty. Experiments demonstrate the method’s

performance in both simulations and a physical environment. The second method is derived for more

general optimisation problems. In particular, this method is provided with theoretical guarantees and

empirical performance comparisons against other approaches in simulated environments.
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CHAPTER 1

Introduction

1.1 Motivation

As civilisation advances, there has been an increasing need to understand our world and the countless

processes that take place within it. Environmental issues, planetary exploration, social media behaviours

and many other related problems have the common characteristic of requiring data to be modelled and

understood (Figure 1.1). In this sense, robots have become powerful tools to actively collect data from

their environments (Marchant and Ramos, 2012; Candela et al., 2017; Bessi and Ferrara, 2016). Machine

learning algorithms (Murphy, 2012) running on robotic platforms have the opportunity to be supplied

with data in a self-supervised approach, using the robot to label new data points. This kind of automation

requires the development of algorithms to actively guide the robot through the data collection process.

Planning algorithms search for strategies to take a system from a non-ideal initial state to a better,

so called, goal state (LaValle, 2006). When applied to robotic systems, planners can guide the robot

through the environment in order to accomplish a pre-defined task, such as learning an environmental

model. Information from observed data allows us to validate and update theoretical models to explain

different kinds of physical environments and their dynamics. At the same time, models aid the planning

algorithm in guiding the robot, either to avoid hazards, such as obstacles and areas difficult to traverse, or

to indicate areas in the model where more data is needed. However, each robot is limited by its sensors.

Sensors allow robots to perceive the world around them, but each sensor is subject to limitations. Cam-

eras and laser ranging sensors cannot see through obstacles. Global positioning systems are subject to

atmospheric interferences, multi-path reflections and satellite visibility. Orientation sensors, such as in-

ertial measurement units, provide estimates that drift over time. All of these add uncertainty to models

learnt from sensor data.

1
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(A) Planetary exploration (B) Air pollution

(C) Social media

FIGURE 1.1: Modern issues demanding increasing amounts of data: (a) Spacecrafts
and robots have been sent to explore other planets in our solar system (Courtesy from
NASA/JPL). (b) Increasing demands for energy and manufactured goods have been
causing environmental issues, such as air pollution (Courtesy from Pexels.com). (c)
Social media behaviours have interested both marketing companies and governments
(Courtesy from Pexels.com).

Besides uncertainty from the sensors, planning algorithms usually assume that a pre-defined cost map is

available to evaluate the feasibility of certain actions with a robot (Zucker et al., 2013). When traversing

unknown environments, however, information about motion feasibility, as provided by traversability

metrics (Martin et al., 2013), geometric maps and dynamical models (Liniger et al., 2015), can only be

acquired online, breaking classical assumptions.

This thesis is motivated by planning problems where limited prior information leads to uncertainty

about the outcomes of decisions. The motivation is mainly based on robotics problems, which present

challenges that can illustrate well this thesis’ concerns. However, the techniques are derived in a general

approach, so that they can also be applied to areas outside of robotics.
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1.2 Bayesian optimisation as a framework for planning under uncertainty

Planning actions for a robot can be formulated as an optimisation problem (Marchant and Ramos, 2012;

Zucker et al., 2013; Marinho et al., 2016; Mukadam et al., 2017). In this case, one acts in order to

optimise an objective function, which encodes goals and costs. In the case of motion planning, costs can

usually be expressed as convex objectives, so that gradient-based approaches are well-suited (Zucker

et al., 2013). However, other problems offer non-convex objectives. In this case, global optimisation is

desired, such as finding:

x∗ ∈ argmax
x∈S

f(x) , (1.1)

where S ⊂ Rd is a compact search space where the algorithm can choose its actions, or queries, x from,

and f is the objective function. In practice, the objective may represent an environmental process, a

terrain model, the performance of a given policy, or other objects of interest. Actions can correspond

to spatial locations in an environmental process, parameters of a control policy, trajectories, etc. An

optimisation algorithm can then use a robot to evaluate each action and find an optimal one.

For an arbitrary problem, the objective function is usually not known in closed form. Traditional op-

timisation methods that require gradients are therefore not applicable. In addition, evaluations of the

objective function with a robot can be costly and noisy due to limitations on the robot, such as energy

supply and sensor imperfections. Techniques that do not depend on gradients, such as evolutionary

methods (Arnold and Hansen, 2010), and Lipschitz optimisation (Malherbe and Vayatis, 2017), usually

require a large amount of function evaluations or assume noiseless observations.

Bayesian optimisation (BO) offers a principled approach to solve optimisation problems where objective

function evaluations are noisy and expensive (Brochu et al., 2010; Shahriari et al., 2016). BO algorithms

have found success in a variety of applications, such as tuning parameters for machine learning al-

gorithms (Snoek et al., 2012), robotic environmental monitoring (Marchant and Ramos, 2012), policy

search (Wilson et al., 2014), computational biology (Ulmasov et al., 2016), etc. Objectives can be con-

sidered as partially-observable functions of the algorithm’s queries, i.e. the output is only observable

through noisy samples. A BO algorithm then learns a probabilistic model of the objective function by

observing the outcomes of its own actions. The model is combined with selection criteria to choose

which actions should be tried next by the algorithm at each stage of the process. More details about the

BO framework will be presented in Chapter 2.
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1.3 Problem statement

Despite its success, many open problems are still present when applying Bayesian optimisation to robot-

ics, a few of which this thesis considers. Firstly, BO has been applied to optimise continuous informative

paths over environmental processes (Marchant and Ramos, 2014). Then it might be possible to apply

BO as a method to optimise paths over unknown terrains that robots need to traverse. Secondly, deal-

ing with the optimisation of paths and policies (Wilson et al., 2014) may also lead to high-dimensional

parameter spaces, which leads to problems in BO that have only recently been explored (Chen et al.,

2012; Wang et al., 2013; Kandasamy et al., 2015; Wang et al., 2018a). Lastly, a common assumption in

BO approaches is that queries are executed precisely at where they were intended to be. When using a

robot to execute queries, that assumption typically does not hold, and very few BO methods have been

recently proposed to address this issue (Nogueira et al., 2016; Beland and Nair, 2017). In addition, esti-

mates of the query location can be provided as probability distributions by localisation systems (Thrun

et al., 2006). BO algorithms may be able to use probability distributions, instead of point estimates, to

learn models of an objective function.

In a general, high-level description, this thesis addresses the problem of: how to select actions to perform

with a robot in order to optimise a partially-observable objective? Partial observability means that the

outcomes of the robot’s actions can only be observed through samples subject to noise. It is also assumed

that evaluations are costly and limited by a given budget.

1.4 Contributions

This thesis is composed of four contributing chapters, whose main contributions are summarised below.

1.4.1 Finding feasible paths

Chapter 3 addresses the possibility of using BO methods to learn feasible paths for a robot to navigate

through unknown terrain. The chapter presents a BO algorithm to select energy-efficient paths between

given start and goal locations while learning a model of the robot’s power consumption over the terrain.

The model is based on Gaussian process (GP) regression (Rasmussen and Williams, 2006), and paths

are formulated as parametric curves. Experiments evaluate the approach both in simulation and with a

physical robot.
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1.4.2 BO in high-dimensional search spaces

Optimising paths and control policies leads to high-dimensional search spaces. Chapter 4 then proposes

a BO method to optimise functions of many parameters by combining BO with coordinate-descent

schemes. The method is applied to the problem of learning control policies for a robot race car with

the goal of minimising its lapping time. The algorithm has no prior information about the track nor

the robot’s dynamical model, just an initial sub-optimal policy example. Policies are parameterised as

functions in a reproducing kernel Hilbert space (RKHS) (Schölkopf and Smola, 2002). Experiments

demonstrate the performance of the algorithm against other optimisation methods in a simulated racing

environment.

1.4.3 Planning under localisation uncertainty

When dealing with physical robots, localisation uncertainty may corrupt models and mislead algorithms

guiding the robot. The traditional approach is to either use mean estimates or to assume that the robot is

following its intended trajectory. Chapter 5 investigates problems where location distributions provided

by localisation systems (Thrun et al., 2006), instead of point estimates, can be used as inputs to models

of the robot’s environment. The chapter proposes a method using a Gaussian process model that takes

probability distributions as inputs as a prior for BO. The proposed method also applies heuristics that

consider the distance between the sampling locations when deciding where to send the robot next. An

application is given to the problem of learning terrain roughness models while safely navigating the

robot, and it is evaluated both in simulation and in an experiment with a physical robot.

1.4.4 Optimisation under uncertain inputs

The investigation in Chapter 5 opens up the question of whether a Bayesian optimisation algorithm

can maintain theoretical convergence guarantees in problems involving uncertain inputs. Chapter 6 then

presents a method for BO under uncertain inputs and theoretical guarantees for this method. The chapter

also presents under which assumptions a conventional BO algorithm (Chowdhury and Gopalan, 2017)

may converge despite the presence of noisy inputs. Experiments in simulation complement the results

by evaluating the performance of the different BO approaches to input noise in a variety of scenarios.
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1.5 Outline

After this introduction, this thesis’ main components are a background chapter, followed by four con-

tributing chapters, and a conclusion, which are outlined below.

Chapter 2 presents the theoretical background necessary to understand the main contributions of this the-

sis. Bayesian optimisation and Gaussian processes are formally introduced. The chapter also presents

reproducing kernel Hilbert spaces, present in chapters 4 and 6, and other background necessary to un-

derstand the results in Chapter 6.

The four contributing chapters (3 through 6) follow the same basic structure. After a motivating intro-

duction, each chapter describes related work, methodology and experiments. Chapter 3 presents the first

contribution of this thesis: a method to find energy-efficient paths over unknown terrains. As a second

contribution, Chapter 4 presents a BO method for policy-search problems involving high-dimensional

parameter spaces. Chapter 5 addresses the problem of planning under localisation uncertainty, providing

a method to learn terrain roughness models while safely navigating a mobile robot. Based on the inves-

tigation in the previous chapter, as a final contribution, Chapter 6 provides a method with theoretical

guarantees to solve more general optimisation problems under uncertain inputs.

The thesis closes in Chapter 7 with a review of the contributions and directions for future research. In

addition, Appendix A, at the end of the thesis, presents the derivation of proofs for auxiliary theoretical

results, such as lemmas and propositions, which were presented in Chapter 6.



CHAPTER 2

Background

This chapter presents a review of concepts that form the basis for the methods this thesis proposes.

Most of the problems faced by this work deal with variables assumed to be uncertain. In this case, a

logical choice of approach is to apply probabilistic models and Bayesian reasoning. To form a basis

for this approach, the chapter begins by reviewing some of the basic concepts of supervised learning in

the Bayesian setting (Section 2.1). The focus is on regression models. In particular, Gaussian process

(GP) regression (Section 2.2) is present throughout this thesis. Bayesian optimisation with GP priors is

introduced in Section 2.3. GPs are also closely related to the topic of reproducing kernel Hilbert spaces

(Section 2.4), which have their own variety of applications. The chapter also presents a review on some

of the basics of topology (Section 2.5) and measure theory (Section 2.6), which play a role in most of

the theoretical results in Chapter 6. Lastly, the chapter closes in Section 2.2.4 with a discussion on GP

models accounting for noisy inputs. At the end of the chapter, a brief summary of the topics with their

connections to the rest of the thesis and a few final bibliographical remarks are provided.

2.1 Bayesian learning

Let us begin by considering the case of supervised learning (Murphy, 2012). Consider a dataset D =

{(xi, yi)}ni=1 composed of n input-output pairs (xi, yi). Our task is to learn a function f mapping each

input xi to the corresponding output yi, so that we can predict the function value at unobserved inputs.

We can be general about the inputs, assuming they are d-dimensional vectors from a set X ⊂ Rd.

The outputs, we will assume that they are real-valued scalars, y ∈ R. In addition, we consider that

observations are corrupted by noise, so that:

yi = f(xi) + νi , i = 1, . . . , n , (2.1)

7
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where νi is independent and identically distributed (i.i.d.) random noise drawn from a given probability

distribution. In general, we will consider that the noise follows a zero-mean Gaussian distribution with

variance σ2ν , i.e. νi ∼ N(0, σ2ν).

To solve the problem above, we consider that f comes from a known hypothesis spaceH and try to find

the f ∈ H that best explains the data inD. In the case of linear regression, for example, we assume that:

f(x) = wTx , (2.2)

where the vector w composes the set of parameters of our model. The hypothesis space in this case is

simply H = {f : X → R | f(x) = wTx,w ∈ Rd}. We can generalise that to the case of non-linear

models by adopting a set of non-linear basis functions φi : X → R, i ∈ {1, . . . , q}, q ∈ N, and having:

f(x) = wTφ(x) , (2.3)

where φ(x) := [φ1(x), . . . , φq(x)]T. In this case, the hypothesis space is given by H = {f : X → R |

f(x) = wTφ(x),w ∈ Rq}.

Given a set of parameterised functions, the task is to find the parameters w that best explain the data

we observe. In general, this problem is formulated as minimising a data-dependent loss function over

the hypothesis space, picking the w that best fits to it. However, there are a few drawbacks to that

approach. The main issue here is that it becomes difficult to infer how confident the model is about its

predictions given a limited amount of noise-corrupted data. Having models whose degree of uncertainty

is quantifiable allows us to take such uncertainty into account when making decisions.

Bayesian learning quantifies model uncertainty by placing a belief distribution over the model we are

trying to learn and updating that belief according to the observed data. Predictions are then performed

via inference over the posterior distribution of the model conditioned on the data. By Bayes’ rule, in the

parametric case, the density of this posterior belief distribution at a given w is:

p(w|D) =
p(w,D)

p(D)
=
p(D|w)p(w)

p(D)
, (2.4)

where p(D|w) corresponds to the likelihood of the parameters, p(w) is the prior, and p(D) is called the

evidence or the marginal likelihood (MacKay, 2003, Sec. 2.3). As a probability distribution, we can use

the posterior p(w|D) to assess how probable each choice of w is to be the correct one. The posterior

probability p(w|D) then encodes the model’s confidence.
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In the case of Bayesian linear regression (Murphy, 2012, Sec. 7.6), we can assume a Gaussian prior over

the parameters vector, w ∼ N(0,Σw). Assuming i.i.d. zero-mean Gaussian noise νi ∼ N(0, σ2ν), the

joint distribution between the data and the parameters p(w,D) is then given by:w

y

 ∼ N
0,

 Σw ΣwΦT

ΦΣw ΦΣwΦT + σ2νI

 , (2.5)

where y = [y1, . . . , yn]T and Φ is a n-by-q matrix with elements Φij = φj(xi). Conditioning the joint

(Equation 2.5) on the data D, we get the posterior distribution (Equation 2.4) as:

w|D ∼ N(ΣwΦTΣ−1D y, Σw −ΣwΦTΣ−1D ΦΣw) , (2.6)

where ΣD := ΦΣwΦT + σ2νI. Now, given a query point x∗ ∈ X , the value of f(x∗) follows:

f(x∗)|D ∼ N(φT
∗ΣwΦTΣ−1D y, φT

∗Σwφ∗ − φT
∗ΣwΦTΣ−1D ΦΣwφ∗) , (2.7)

where φ∗ := φ(x∗). The mean of the above distribution is our most likely prediction for f(x∗), and the

variance quantifies the level of uncertainty about that prediction.

As discussed in Rasmussen and Williams (2006, Sec. 2.1.2), φ(x) maps the d-dimensional vector x

into a q-dimensional feature space. These maps appear in the predictive distribution (Equation 2.7) in

the general form of (x,x′) 7→ φ(x)TΣwφ(x′). The latter defines a positive-definite kernel or covari-

ance function k(x,x′) = φ(x)TΣwφ(x′). Kernels allow abstracting feature maps to even infinite-

dimensional feature spaces without having to deal with the elements of such spaces directly, leading

to non-parametric methods. Kernel methods form an essential part of this thesis and will be further

reviewed in the following sections.

The next two sections present kernel methods for Bayesian learning. Section 2.2 introduces Gaussian

process regression, which arises as a natural extension of the parametric framework in Bayesian linear

regression to the non-parametric setting. Section 2.4 presents reproducing kernel Hilbert spaces, which

connects kernel methods to functional analysis through the framework of Hilbert spaces.

2.2 Gaussian processes

Gaussian process (GP) models (Rasmussen and Williams, 2006) provide a non-parametric framework

for Bayesian inference over function spaces. Non-parametric here means that a model’s parameters are
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not explicitly taken into account, but are inferred from the data, instead. This characteristic allows a

model to be updated by simply adding a new data point without the need for retraining. As probabilistic

models, GP predictions are probability distributions. In particular, a GP directly models a distribution

over a space of functions, enabling Bayesian reasoning in that space.

By definition, a Gaussian process is a stochastic process (Bauer, 1981), i.e. a collection of random

variables, whose finite sub-collections follow a joint Gaussian distribution (Rasmussen and Williams,

2006, Def. 2.1). Stochastic processes can also be interpreted as random functions (Berlinet and Thomas-

Agnan, 2004; Rasmussen and Williams, 2006), which is the approach taken here to describe GPs.

Analogously to conventional multivariate Gaussian distributions, which are specified by a mean vector

and a covariance matrix, a GP is completely specified by a mean function and a covariance function.

Let’s say we want to model a function f : X → R, considering an arbitrary domain X ⊂ Rd. A GP

model with mean function m : X → R and positive-definite covariance function k : X × X → R

places a prior on f so that, for any finite collection of query points {xi}ni=1 ⊂ X , the vector fn =

[f(x1), . . . , f(xn)]T is distributed according to a Gaussian:

fn ∼ N(mn,Kn) , (2.8)

where mn := [m(x1), . . . ,m(xn)]T and [Kn]ij = k(xi,xj).

Now assume we are given a set of observations Dn = {(xi, yi)}ni=1, where yi = f(xi) + νi, and νi ∼

N(0, σ2ν). Suppose we want to infer the value of the function at a given query point x∗ ∈ X . According

to the Gaussian process model, the vector of observations yn := [y1, . . . , yn]T and the function value at

the query location f(x∗) are joint normally distributed: yn

f(x∗)

 ∼ N
 mn

m(x∗)

 ,

Kn + σ2νI kn(x∗)

kn(x∗)T k(x∗,x∗)

 . (2.9)

where kn(x∗) := [k(x1,x∗), . . . , k(xn,x)]T. Conditioning the joint distribution in Equation 2.9 on the

observations, we have that:

f(x∗)|Dn ∼ N(µn(x∗), σ2n(x∗)) , (2.10)
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where:

µn(x∗) = m(x∗) + kn(x∗)T(Kn + σ2νI)−1(yn −mn) , (2.11)

kn(x,x′) = k(x,x′)− kn(x)T(Kn + σ2νI)−1kn(x′) , (2.12)

σ2n(x∗) = kn(x∗,x∗) . (2.13)

This predictive distribution allows us to infer function values at unobserved locations. Also note that kn

in Equation 2.12 defines a valid covariance function, so that GP(µn, kn) is a Gaussian process, often

referred to as the posterior GP (Srinivas et al., 2010).

2.2.1 Covariance functions

The GP covariance function determines how the values of random functions at different query points

co-vary, i.e.:

Covf∼GP(m,k)(f(x), f(x′)) = k(x,x′) , (2.14)

where GP(m, k) represents a GP prior with mean m and covariance k. To define a valid covariance

function, k : X × X → R needs to be positive definite, i.e. for all n ∈ N, α1, . . . , αn ∈ R and

{xi}ni=1 ⊂ X , k satisfies:
n∑
i=1

n∑
j=1

αiαjk(xi,xj) ≥ 0 . (2.15)

In particular, if equality only holds for α1 = · · · = αn = 0, k is called strictly positive definite 1.

Considering the Bayesian linear regression example in Equation 2.7, we have that:

k(x,x′) = φ(x)TΣwφ(x′) ,∀x,x′ ∈ X , (2.16)

defines a positive-definite covariance function. If we rewrite Equation 2.7 in terms of k, we obtain

exactly the GP predictive equations (Equation 2.11 and Equation 2.13) for the zero-mean case. Hence,

a Bayesian linear regression model with Gaussian prior on the weights can be interpreted as a particular

type of GP model.

1Note that this definition can be confused with the case of matrices. Some authors actually refer to what was defined as
a positive-definite kernel in Equation 2.15 as positive semi-definite (Rasmussen and Williams, 2006). That terminology only
calls positive definite the kernels that were defined as strictly positive definite in the description above. This thesis, instead,
adopts the terminology above, since most of the theory holds if the kernels are simply positive definite, as defined.
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The GP literature is filled with several other types of covariance functions for GP models. The remainder

of this section presents a few covariance functions used throughout the work in this thesis. For more

examples, the reader is referred to Rasmussen and Williams (2006, Ch. 4).

Linear covariance functions: One of the simplest cases is given by the linear covariance function:

k(x,x′) = xTAx′ + b ,∀x,x′ ∈ Rd (2.17)

where A is any positive-definite matrix and b ≥ 0. This covariance function allows us to model linear

functions of the form f(x) = aTx + c, where a ∈ Rd and c ∈ R.

Translation-invariant covariance functions: Another set of covariance functions is given by those

with a translational-invariance property, i.e. k(x,x′) = k(x − x′,0). For instance, many types of

covariance functions can be defined as a radial function in terms of some distance metric ρ between the

data points, i.e.:

k(x,x′) = k(ρ(x,x′)) . (2.18)

Translation invariance leads to a stationary Gaussian process, i.e. the distribution of the process is not

affected by a translation of the input space (Ledoux and Talagrand, 1991, p. 368). Hence, translation-

invariant covariance functions are also referred to as stationary.

Stationary covariance functions: One of the most popular stationary covariance functions is the

squared exponential, which is commonly given by:

k(x,x′) = σ2f exp

(
−1

2
ρ2L(x,x′)

)
, (2.19)

where σ2f is called the signal variance parameter, and:

ρL(x,x′) :=

√
(x− x′)TL−1(x− x′) (2.20)

is a common distance function for vectorial inputs, where L is a positive-definite matrix used for scaling.

For being infinitely many times differentiable with respect to its inputs (Rasmussen and Williams, 2006),

the squared exponential covariance function models very smooth functions with a GP. However, in most

applications, such a level of smoothness is unrealistic. Therefore, another popular family of covariance

functions is the Matérn class, which provides a controllable smoothness parameter ν in its construction

(Rasmussen and Williams, 2006, p. 84). In particular, for a half-integer ν = p + 1/2, where p is a
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non-negative integer, the Matérn covariance functions are given by:

k(x,x′) = σ2f exp
(
−
√

2νρL(x,x′)
) p!

(2p)!

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8νρL(x,x′)

)p−i
, (2.21)

In the later chapters, we will specially make use of Matérn covariance functions with ν = {12 ,
3
2 ,

5
2},

commonly referring to them by the numerator (e.g. Matérn 1 refers to ν = 1/2).

Hyper-parameters: The parameters of the covariance function, the noise model and the mean func-

tion of the GP model are referred to as the hyper-parameters of the model. In the case of the stationary

covariance functions presented above, the noise model variance σ2ν , the signal variance σ2f and L com-

pose the set of hyper-parameters for a stationary zero-mean GP model. Commonly L is chosen as a

diagonal matrix with [L]ii = `2i , `i > 0, i ∈ {1, . . . , d}. Each `i is called a length-scale, as it controls

the scaling of the i’th coordinate in the input space. The larger `i is, the lower is the sensitivity of the

covariance function to changes in the i’th coordinate. In the special case when L = `2I, having a single

length-scale, the covariance function is said to be isotropic, since it varies equally across all directions.

2.2.2 Hyper-parameter learning

The hyper-parameters of a GP play an important role in determining the capability of a model to explain

real data. Ideally one should know the hyper-parameters of a GP model in advance, as they are part of

the prior over the function space being modelled. However, that is rarely the case in practice.

The machine learning literature provides a few approaches to handle unknown hyper-parameters by

learning them from data (Rasmussen and Williams, 2006; Snoek et al., 2012; Wang et al., 2018b;

Berkenkamp et al., 2019). The most popular approaches are based on type-II maximum likelihood

(MLE) or maximum a posteriori (MAP) estimation (Rasmussen and Williams, 2006). Given a dataset

with n observationsDn = {(xi, yi)}ni=1, the marginal likelihood p(Dn|θ) basically determines how well

GP hyper-parameters θ explain the observed data Dn by marginalising fn out of the joint probability

density p(yn, fn|θ) given by Equation 2.9. As a result, we obtain:

log p(Dn|θ) = log p(yn|θ) = −1

2
(yn−mθ

n)T(Kθ
n+σ2νI)−1(yn−mn)− 1

2
log |Kθ

n+σ2νI|−
n

2
log 2π ,

(2.22)

where |Kθ
n+σ2νI| represents the determinant of the matrix Kθ

n+σ2νI, and the superscripts with θ denote

dependence on the hyper-parameters.
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Equation 2.22 can be maximised with respect to the hyper-parameters by gradient-based methods,

when derivatives of the covariance functions with respect to the hyper-parameters are available, or by

derivative-free methods, otherwise. In the works presented by this thesis, in particular, we applied local

optimisation algorithms, such as the derivative-free Constrained Optimization by Linear Approximations

(COBYLA) (Powell, 1998) and the sub-gradient-based RPROP algorithm (Riedmiller and Braun, 1993),

depending on whether or not derivatives of the covariance function with respect to its hyper-parameters

were available.

Optimising Equation 2.22 with respect to hyper-parameters within a bounded search space is equivalent

to placing a uniform prior p(θ) over the hyper-parameters, so that MLE is equivalent to a MAP solution

in this case. To perform MAP estimation with more informative priors (see Lizotte, 2008, e.g.), one can

add log p(θ) to Equation 2.22, which then acts as a regularisation term in the optimisation process.

2.2.3 Computational complexity and sparse approximations

One of main sources of computational complexity in traditional GP approaches is the inversion of the

kernel matrix Kn (see Equation 2.9). This operation scales as O(n3) with the number of data points.

Although not applied in this thesis, the GP literature is filled with approximation methods to address

this issue. One could use, for example, sparse approximations based on Fourier features (Rahimi and

Recht, 2007), which lead to sparse spectrum Gaussian processes (Lázaro-Gredilla et al., 2010). Sparse

spectrum models can achieve low computational costO(nq2), where q is the number of Fourier features,

when using incremental updates (Gijsberts and Metta, 2013), making them suitable for online learning

applications, as in Bayesian optimisation (Mutný and Krause, 2018). Another popular approach is to

use sparse GP models based on variational inference approaches (Hensman et al., 2013), which usually

require batch data. Adapting these models to online learning for Bayesian optimisation has also been

done (Mcintire et al., 2016). However, such approach leads to costly operations in the updates of the

variational parameters.

2.2.4 GP models accounting for input noise

Consider that measurement and execution noise affect the evaluation of a function f : X → R, where

X ⊂ Rd. In this case, given a desired query input x∗ ∈ X , the actual location where the observation is

collected at, i.e. x̃∗|x∗ ∼ P∗, is not directly observable. Assuming that f ∼ GP(m, k), the distribution

of f(x̃∗)|x∗ is no longer Gaussian in general, due to the usually non-linear input dependencies in the GP
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FIGURE 2.1: The effects of input noise on queries to a non-linear function. The func-
tion in the middle plot has been sampled from a squared-exponential GP model. The
bottom plot presents a Gaussian query distribution. The top-left plot shows the distribu-
tion of output values. As seen, the resulting distribution of function values is no longer
Gaussian due to the function’s non-linearity.

posterior (Equation 2.11 and Equation 2.13). Therefore, the resulting stochastic process that represents

f under noisy inputs is no longer a Gaussian process and lacks an analytic formulation (Girard, 2004;

Damianou et al., 2016). Figure 2.1 presents an example where Gaussian noise affects the query of a

function sampled from a GP.

The expected Gaussian process

In the machine learning literature, different methods have been proposed to learn Gaussian process

models over functions with noisy inputs (Girard, 2004; Mchutchon and Rasmussen, 2011; Dallaire et al.,

2011; Damianou et al., 2016). As demonstrated by Girard (2004), one can formulate a Gaussian process

approximation for f by using the iterated mean and covariance of the resulting stochastic process under

the influence of input noise. In particular, in the case of a constant deterministic mean function m(x) =

m0, ∀x ∈ X , the mean and the covariance of this noisy process are given by:

Ex̃[Ef [f(x̃)]] = m0 (2.23)

Covf,x̃,x̃′ [f(x̃), f(x̃′)] = Ex̃,x̃′ [k(x̃, x̃′)] . (2.24)
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Therefore, for a set of independent random variables {x̃i}ni=1 with corresponding distributions {Pi}ni=1,

we can define the expected covariance function (Dallaire et al., 2011) as:

k̂(Pi, Pj) := E[k(x̃i, x̃j)] =

E[k(x̃i, x̃j)] =
∫
X
∫
X k(x,x′) dPi(x) dPj(x

′) , i 6= j

E[k(x̃i, x̃i)] =
∫
X k(x,x) dPi(x) , i = j .

(2.25)

Notice that, when x̃i and x̃j represent the same random variable, the above equation becomes a single

expectation under the same input distribution.

Depending on the type of input distributions and the original kernel for deterministic inputs k, approx-

imate and analytical solutions for Equation 2.25 are available in the literature (Girard, 2004; Dallaire

et al., 2011; O’Callaghan and Ramos, 2012). An example is the squared exponential kernel in Equa-

tion 2.19. In this case, if the input distributions are Gaussian, the resulting covariance function, according

to Dallaire et al. (2011), is given by:

k̂(N(x̂i,Σi), N(x̂j ,Σj)) =
σ2f exp

(
−1

2(x̂i − x̂j)
T(L + Σi + Σj)

−1(x̂i − x̂j)
)

|I + L−1(Σi + Σj)(1− δij)|1/2
, (2.26)

where σ2f and L are the same hyper-parameters as described for the standard squared exponential kernel

in Equation 2.19 and δij denotes the Kronecker delta. As seen, though probability measures are abstract

objects, k̂ can be formulated as a function of the parameters of the input distributions, making them

tractable, in practice.

The posterior of the stochastic process representing f ∼ GP(m, k) under input noise is not Gaussian

due to the non-linear form of Equation 2.11 and Equation 2.13 with respect to the query x and the data

points xi. Yet one can obtain a suitable approximation for the original f in the noisy input setting by

doing inference over a GP with mean m and covariance function k̂, as defined in Equation 2.25. Such

model is referred to as the expected Gaussian process model by Dallaire et al. (2011).

Despite the name, notice that the expected GP model does not truly represent the expected process. The

true expected GP would require to compute expectations of the posterior mean and posterior variance

with respect to the distributions of both the query point and the data points, which can become easily

intractable. Following the terminology adopted by Dallaire et al. (2011), this thesis refers to expected

Gaussian process as simply the model obtained by using the expected covariance function, as defined in

Equation 2.25.
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GP predictions under uncertain inputs

Equation 2.25 defines a covariance function over the set P of all probability measures on X . A GP

model with zero mean and covariance function k̂ : P × P → R places a prior over the space composed

of functions ĝ : P → R. Inference can then be done similarly to the way it is done with conventional

GP models (Section 2.2). Given a set of observations Dn = {(Pi, yi)}ni=1, where yi = ĝ(Pi) + νi and

Pi ∈ P , under the assumption that νi ∼ N(0, σ2ν), we have that the GP posterior mean µ̂n and variance

σ̂2n, at a given P∗ ∈ P , are:

µ̂n(P∗) = k̂n(P∗)T(K̂n + σ2νI)−1yn , (2.27)

σ̂2n(P∗) = k̂(P∗, P∗)− k̂n(P∗)T(K̂n + σ2νI)−1k̂n(P∗) , (2.28)

with k̂n(P∗) := [k̂(P∗, P1), . . . , k̂(P∗, Pn)]T and [K̂n]ij = k̂(Pi, Pj). If x̃∗|x∗ ∼ P∗, the expected GP

formulation approximates the posterior over f(x̃∗) as:

p(f(x̃∗)|x∗,Dn) ≈ N(µ̂n(P∗), σ̂2n(P∗)) . (2.29)

This model is applied in Chapter 5 as a prior for a Bayesian optimisation algorithm to safely navigate a

mobile robot over rough terrain under localisation uncertainty.

2.3 Bayesian optimisation

Consider the problem of searching for the global optimum of a function f : Rd → R within a given

compact search space S ⊂ Rd, i.e. finding 2:

x∗ = argmax
x∈S

f(x) . (2.30)

Assume that f is unknown to us and we only have access to noisy observations of its output y = f(x)+ν

with ν ∼ N(0, σ2ν). In addition, we are only allowed to sample the function up to n times.

Bayesian optimisation (Brochu et al., 2010) assumes that f(x) is a random variable and applies a prob-

abilistic model as a prior over f . Using a Gaussian process model, BO encodes prior assumptions about

f via the mean m and the covariance function k of the GP.

2argmax corresponds to the set of arguments that maximise a function, which may contain multiple elements. The use of
x∗ = argmaxx∈S f(x), instead of x∗ ∈ argmaxx∈S f(x), indicates the assumption that there is only one x∗ ∈ S for which
f(x∗) = maxx∈S f(x).
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(A) Objective (B) Observations (C) GP prior

(D) Acquisition function (E) Updated GP (F) Updated acquisi-
tion function

FIGURE 2.2: Illustration of the BO process: Consider an unknown objective function
f and its global optimum x∗ in a given search space S (a). Only noisy observations
(b) are available. At each iteration t, BO fits a GP model over f with the current set of
observations (c). Then BO maximises an acquisition function, which takes into account
the GP model, to select the next query point xt (d). The function is sampled at xt,
providing BO with a new observation to update the GP with (e). The algorithm then
proceeds by selecting a new query point xt+1 with the updated acquisition function (f).

Rather than directly searching over f , BO uses an acquisition function h(x) as a guide to sequentially

select input locations at which to observe f . The acquisition function uses the information provided by

the GP prior and the observations of f to estimate an utility value for sampling f at a given x. So at

each iteration t, BO queries the objective function f at the location of highest utility according to the

acquisition function, considering the data observed so far Dt−1, which is given by:

xt = argmax
x∈S

h(x|Dt−1) . (2.31)

After observing f at xt, BO updates the GP observations dataset with the new pair (xt, yt), which

improves the belief about f . Then the algorithm proceeds to the next iteration, choosing an xt+1.

The BO loop runs until a stopping criterion is satisfied, which is usually defined by a total number of

iterations, n. At the end of this process, BO obtains a model that approximates the objective function

f |Dn ∼ GP(µn, σ
2
n) and an estimate of the optimum location x∗, given by the best sample in the dataset.

Algorithm 1 summarises BO in pseudo-code, and Figure 2.2 presents an illustration.
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Algorithm 1: Bayesian optimisation
Input:

S: search space
n: total number of iterations

1 for t ∈ {1, . . . , n} do
2 xt = argmax

x∈S
h(x|Dt−1)

3 yt ← Sample f(xt)

4 Dt = Dt−1 ∪ {(xt, yt)}
5 t∗ = argmax

t∈{1,...,n}
µn(xt)

Result: µn, σ2n,xt∗

2.3.1 Regret analysis

To derive theoretical guarantees for BO algorithms, a quantity that plays an important role in the theory

is regret. BO can be classified as a multi-armed bandits algorithm (Srinivas et al., 2012). In the bandits

literature (Arora et al., 2012), regret basically measures how good the algorithm’s actions were when

compared to optimal choices. The latter corresponds to the decision that an algorithm with perfect

knowledge about the objective would make. There are many types of regret definitions available in the

bandits literature (Arora et al., 2012). However, the work in this thesis is mainly concerned with instant

regret and cumulative regret, which are defined as follows.

Consider a continuous function f : S → R defined over a compact set S. At each round t ∈ N, a

maximisation algorithm over f selects query points xt ∈ S. The instant regret suffered by the algorithm

at round t is defined as:

rt := max
x∈S

f(x)− f(xt) , (2.32)

while the cumulative regret after n rounds is defined as:

Rn :=

n∑
t=1

rt . (2.33)

A desirable characteristic of an optimisation algorithm is to have no regret, at least asymptotically, i.e.

lim
n→∞

mint≤n rt = 0. With vanishing regret, as n → ∞, we have that maxt≤n f(xt) → maxx∈S f(x).

From the definitions above, one can see that theoretical results providing upper bounds for the cumulative

regret of an optimisation algorithm also bound the instant regret, since mint≤n rt ≤ Rn
n . Asymptotically

vanishing regret then happens whenever the cumulative regret grows sub-linearly, yielding lim
n→∞

Rn
n = 0.
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These are the regret bounds usually sought after for BO algorithms, especially when based on upper

confidence bound (UCB) approaches (Srinivas et al., 2012; Chowdhury and Gopalan, 2017). Other

types of regret bounds include those based on the simple regret, i.e.:

st := max
x∈S

f(x)−max
i≤t

f(xi) , (2.34)

as derived for other BO approaches (Bull, 2011; Wang and Jegelka, 2017).

2.3.2 Acquisition functions

Acquisition functions define the selection criteria in determining BO queries. Sometimes they are also

referred to as utility functions or search criteria. On one hand, these functions evaluate how useful

collecting an observation at a given query location is for the optimisation process. On the other hand,

they also encode criteria that quantify what is important for a query point to present, e.g. high predictive

variance. The following presents the main types of acquisition function used throughout this thesis.

Upper confidence bound (UCB)

A commonly used acquisition function in the BO literature is the upper confidence bound (UCB). As

proposed by Srinivas et al. (2012), the UCB utility is given by:

hUCB(x|Dt−1) := µt−1(x) + βtσt−1(x), (2.35)

where βt > 0 is a parameter of the algorithm and µt−1 and σt−1 are given by the GP posterior with

the observations collected up to iteration t − 1. Under certain assumptions, it is possible to properly

set βt as function of t to allow hUCB(x) to behave as an upper bound for the value of f(x) that is

valid at every iteration and across the entire search space with high probability. In such settings, BO

is able to attain asymptotic sub-linear regret bounds (Srinivas et al., 2012; Chowdhury and Gopalan,

2017). This parameter βt controls the exploration-exploitation trade-off (Brochu et al., 2010), with

higher values favouring areas of high uncertainty, while lower values favour areas of high mean value.

Regret bounds are then guaranteed by setting βt as a monotonically increasing function of t, ensuring

continued exploration. In practice, however, βt is usually set at a fixed value, which does not guarantee

asymptotic regret bounds, but improves short-term performance.



2.3 BAYESIAN OPTIMISATION 21

Distance-penalised upper confidence bound (DUCB)

One example of acquisition function that can be applied to problems involving robotic navigation is the

distance-penalised upper confidence bound (DUCB) (Marchant and Ramos, 2012):

hDUCB(x|Dt−1) := µt−1(x) + βσt−1(x)− ζ‖x− xt−1‖2 , (2.36)

where ‖x − xt−1‖2 corresponds to the Euclidean distance between the last sampled location and the

candidate x, µt−1 and σt−1 are given by the GP posterior with the observations inDt−1, and β > 0, ζ >

0 are parameters to be set. β controls the exploration-exploitation trade-off, with higher values favouring

areas of high uncertainty, while ζ penalises large jumps, allowing shorter paths between observations.

In addition, notice that for minimisation objectives, DUCB can be applied by simply flipping the sign of

the GP posterior mean to negative instead.

At the moment, there are no known regret bounds for BO algorithms based on DUCB in the literature.

However, such bounds should be possible to derive. The distance-penalty term in Equation 2.36 defines

the regret with respect to an adversary that remembers only the last action (i.e. xt−1) taken by the

algorithm. Therefore, one should be able to apply the results in Arora et al. (2012) to derive DUCB

algorithms with sub-linear regret bounds.

Expected improvement (EI)

Another classic type of acquisition function is the expected improvement (EI) (Bull, 2011). At iteration

t, one can define y∗t := maxi<t yt as an optimal incumbent. The expected improvement is then defined

as:

hEI(x|Dt−1) := E[max {0, f(x)− y∗t } |Dt−1] . (2.37)

In the case of a GP prior on f , the EI is given by:

hEI(x|Dt−1) =

(µt−1(x)− y∗t )p(st; 0, 1) + σt−1(x)ϕ(st) , σt−1(x) > 0

0 , σt−1(x) = 0
, (2.38)

where st :=
µt−1(x)−y∗t
σt−1(x)

, if σt−1(x) > 0. Here p(st; 0, 1) and ϕ(st) denote, respectively, the cumulative

density function and the probability density function of the standard normal distribution evaluated at st.

For the interested reader, theoretical results for EI are also available in the literature. Bull (2011), for

instance, provides regret bounds for the optimisation of smooth functions with an EI-based algorithm.
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2.3.3 Pure exploration

If one’s objective is simply to learn a Gaussian process model, a valid strategy is to select xt as:

xt = argmax
x∈S

σ2t−1(x) . (2.39)

As discussed in Srinivas et al. (2012), this selection criterion is equivalent to choosing the location that

provides the maximum amount of information about f ∼ GP(m, k) given the previous observations.

The information gain provided by n observations is given by the mutual information between the obser-

vations yn and the corresponding fn as:

I(yn; fn) =
1

2
log |I + σ−2ν Kn| , (2.40)

which is upper-bounded by the maximum information gain, γn, defined as:

γn := max
Q⊂X :|Q|=n

I(yQ; fQ) , (2.41)

where yQ = fQ + νQ, νQ ∼ N(0, Iσ2ν), and fQ := [f(x)]x∈Q ∈ Rn. The predictive variances and the

information gain are related by (Srinivas et al., 2012, Lem. 5.3):

I(yn; fn) =
1

2

n∑
t=1

log(1 + σ−2ν σ2t−1(xt)) . (2.42)

Due to the sub-modularity of the information gain, following the strategy in Equation 2.39 then leads to

a near-optimal information gain with I(yn, fn) ≥ (1− 1/e)γn. Besides that, general upper bounds for

γn are available in the literature (see Srinivas et al., 2012, Theorem 5).

2.3.4 Practical considerations with model hyper-parameters

As discussed in Section 2.2.2, GP hyper-parameters are usually unknown a priori, so that one has to

learn them from data. To account for uncertain hyper-parameters in the BO decision-making process,

one can include the GP hyper-parameters θ as latent variables in a joint distribution alongside the latent

function:

p(f,θ|D) = p(f |D,θ)p(θ|D) , (2.43)
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since the hyper-parameters do not depend on the latent function when conditioned on the data D. Then

one could work with the marginal posterior over f :

p(f |D) =

∫
θ
p(f |D,θ)p(θ|D) dθ . (2.44)

In the BO context, the marginalisation above is applied by using an integrated acquisition function, as

proposed by Snoek et al. (2012):

h(x|Dt−1) = Eθ[h(x|Dt−1,θ)] =

∫
θ
h(x|Dt−1,θ)p(θ|D) dθ . (2.45)

However, the main difficulty in the former integral is in dealing with the hyper-parameters posterior:

p(θ|D) =
p(D|θ)p(θ)

p(D)
. (2.46)

The evidence p(D) =
∫
p(D|θ)p(θ) dθ is usually intractable to compute, so that one has to apply nu-

merical integration methods, such as Markov chain Monte Carlo (Murray and Adams, 2010), to solve

Equation 2.45. A second approach is to predetermine the hyper-parameters via type-II maximum likeli-

hood estimation (MLE):

θ∗ ∈ argmax
θ

p(D0|θ) (2.47)

or via maximum a posteriori (MAP) estimation:

θ∗ ∈ argmax
θ

p(D|θ)p(θ) . (2.48)

The posterior over the hyper-parameters is then replaced by a point-mass distribution on θ∗, so that:

p(f |D) ≈ p(f |D,θ∗) . (2.49)

The data for these estimates is usually the observations collected up to the current BO iteration or

provided by an initial random sampling stage (McKay et al., 1979). Although computationally cheaper

when compared to the full marginalisation approach, the main drawback in this case is that it is easy

to over-fit the hyper-parameters to the data, introducing unwanted bias (Snoek et al., 2012). However,

using point estimates for the hyper-parameters can still be a better approach than marginalisation if one

considers online adaptation methods (Wang and de Freitas, 2014; Berkenkamp et al., 2019). The main

idea behind adaptive methods is to anneal GP length-scales so that more complex objective functions

are allowed by the GP prior as BO progresses. The practical effect is a gradual increase in exploration.

For this thesis, the online adaptation method presented by Wang and de Freitas (2014) was applied in

Chapter 4, while other chapters apply traditional MLE whenever hyper-parameters are unknown.
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2.4 Reproducing kernel Hilbert spaces

Gaussian processes are directly related to the concept of a reproducing kernel Hilbert space (RKHS). In

essence, a positive-definite covariance function also defines a so-called reproducing kernel and a unique

Hilbert space associated with it. This section revises these concepts, which will play an important role

in the derivation of models and theoretical results in the coming chapters. The section starts by revising

the concept of linear spaces, also called vector spaces, which a Hilbert space is a subclass of. After that,

reproducing kernels and RKHS’s are defined in Section 2.4.2. The section closes in Section 2.4.3 with

a few comments on the relationship between RKHSs and GPs. For a more in-depth review, among the

abundant literature on the topic of RKHSs, readers are referred to Schölkopf and Smola (2002), Berlinet

and Thomas-Agnan (2004) and Steinwart and Christmann (2008).

2.4.1 Linear spaces

As a single-sentence definition, a Hilbert space is an inner product space that is complete with respect

to the norm induced by its inner product. Although Hilbert spaces can also be defined for vector-valued

functions (Micchelli and Pontil, 2003), this section will be focusing on real, scalar-valued Hilbert spaces.

The following briefly reviews some related concepts of mathematical spaces, which are necessary for a

more complete definition of a Hilbert space and a RKHS. Books on functional analysis, such as Kreyszig

(1978) and Lax (2002), provide further details on these topics.

Vector spaces: A vector space, also called a linear space, over a field F is basically a non-empty

set F which is closed under the operations of addition + : F × F → F and scalar multiplication

∗ : F × F → F . We say that a given set is closed under an operation if performing the operation on

elements of the set always produces an element of the same set. For example, Rd, d ∈ N, the space of d-

dimensional real-valued vectors, is a vector space. The space RX of all real-valued functions f : X → R

on an arbitrary non-empty set X is also a vector space when equipped with the operations of addition

and scalar multiplication defined by:

(f + g)(x) = f(x) + g(x) , ∀x ∈ X , (2.50)

(αf)(x) = αf(x) , ∀x ∈ X , (2.51)

for any f, g ∈ RX and any α ∈ R.
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The following are definitions of other types of mathematical spaces related to the concept of vector

spaces. For the axioms, consider the field of real numbers F = R, any f, g, h ∈ F and any α, β ∈ R.

Inner product spaces: An inner product space (F , 〈·, ·〉F ) is a vector space F equipped with an

additional structure defined by an inner product operator 〈·, ·〉F : F × F → R. The inner product

operation satisfies the following axioms:

A1. Symmetry: 〈f, g〉F = 〈g, f〉F ;

A2. Positive-definiteness: 〈f, f〉F ≥ 0, 〈f, f〉F = 0⇐⇒ f = 0;

A3. Bilinearity: 〈αf + βg, h〉F = 〈αf, h〉F + 〈βg, h〉F = α〈f, h〉F + β〈g, h〉F .

As a consequence of the inner product definition, we also have the following form of the Cauchy-

Schwartz inequality:

|〈f, g〉F | ≤
√
〈f, f〉F 〈g, g〉F . (2.52)

A simple example of inner product space is Rd, d ∈ N, equipped with the dot product operation:

〈x,y〉Rd := x · y :=

d∑
i=1

xiyi , ∀x,y ∈ Rd . (2.53)

Normed vector spaces: In a vector space F , we can define a norm ‖·‖F : F → R+
0 , which is any

function satisfying:

A1. Absolute homogeneity: ‖αf‖F = |α|‖f‖F ;

A2. Positive-definiteness: ‖f‖F ≥ 0, ‖f‖F = 0⇐⇒f = 0;

A3. Triangle inequality: ‖f + g‖F ≤ ‖f‖F + ‖g‖F .

For a given set F and norm ‖·‖F , the space (F , ‖·‖F ) is called a normed vector space.

Norms generalise the concept of length for 2- and 3-dimensional real vectors to arbitrary vector spaces.

Examples of norms applied in this thesis are p-norms, such as:

‖x‖p :=

(
d∑
i=1

xpi

) 1
p

, ∀x ∈ Rd , (2.54)
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which are valid norms for p ≥ 1, with ‖x‖∞ := maxi∈{1,...,d} xi. Similarly, for real-valued functions

over some domain X ⊂ Rd, i.e. F = RX , one can define:

‖f‖p :=

(∫
X
|f(x)|p dx

) 1
p

. (2.55)

However, notice that this ‖·‖p may not satisfy the positive-definiteness axiom over the entire RX . Any

function f ∈ RX that is zero almost everywhere, except over a set of countably many points in X ,

would still have ‖f‖p = 0, even though f 6= 0. In addition, any norm needs to be finite by definition,

since∞ /∈ R+
0 . If we restrict ourselves to F = C(X ), the set of continuous real-valued functions on a

compact X ⊂ Rd, we then have that ‖·‖p becomes a valid norm on elements of that set.

From an inner product, one can also straightforwardly define an induced norm by: ‖·‖F :=
√
〈·, ·〉F .

For instance, the 2-norm, as defined in Equation 2.54 with p := 2, is the norm induced by the inner

product in Rd given by Equation 2.53.

Metric spaces. A metric on a set F is any function ρF : F × F → R+
0 , where R+

0 denotes the set of

non-negative real numbers, which satisfies the following axioms:

A1. Symmetry: ρF (f, g) = ρF (g, f);

A2. Positive-definiteness: ρF (f, g) ≥ 0, ρF (f, g) = 0⇐⇒ f = g;

A3. Triangle inequality: ρF (f, g) ≤ ρF (f, h) + ρF (h, g).

A metric space (F , ρF ) is simply a set F equipped with a metric ρF defined on it. Notice that F does

not need to be a vector space for one to define a metric on it.

Both normed vector spaces and inner product spaces have metrics associated with them. For a given

norm ‖·‖F , the induced metric is ρF (f, g) := ‖f − g‖F , ∀f, g ∈ F . For instance, the 2-norm is the

norm associated with the Euclidean distance metric:

ρRd(x,y) := ‖x− y‖2 =

√√√√ d∑
i=1

(xi − yi)2 =
√

(x− y)T(x− y) . (2.56)

Therefore, the metric space defined by Rd, d ∈ N, and ‖·‖2 is referred to as an Euclidean vector space.

As the equation above still defines a valid metric if one scales the vectors by a positive-definite matrix

M, a non-Euclidean metric on Rd is the Mahalanobis distance and its associated norm, given by:

‖x− y‖M :=
√

(x− y)TM(x− y) . (2.57)
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This metric is the one applied in the definition of stationary covariance functions in Section 2.2.1.

Complete metric spaces: A metric space is complete if the limit of every Cauchy sequence in it is an

element of the same space (Munkres, 1975). A sequence {fi}i∈N in a normed vector space (F , ‖·‖F ) is

Cauchy if, and only if, for every ε > 0, there is a nε ∈ N, such that:

∀i, j > nε, ‖fi − fj‖F < ε . (2.58)

Without completeness it is not possible to ensure that the limit of any given convergent sequence is an

element of the same metric space. That is why important concepts in calculus and functional analysis are

only valid for complete metric spaces. As particular types of complete metric spaces, we have Banach

spaces and Hilbert spaces. It is also known that every metric space has a completion (Kreyszig, 1978).

Banach spaces: A normed vector space that is complete with respect to the metric induced by its norm

is called a Banach space.

Hilbert spaces: A Hilbert space is an inner product space that is complete with respect to the norm

induced by its inner product.

From this last definition, we can see that any Hilbert space is also a Banach space with norm defined

by the inner product. As a trivial example of a Hilbert space, we have Euclidean vector spaces Rd.

However, Hilbert spaces become a powerful tool in machine learning via the concept of a reproducing

kernel, which is explained in the next section.

2.4.2 Reproducing kernels and their Hilbert spaces

We say that a function k : X × X → R is the reproducing kernel of a Hilbert space H composed of

functions mapping X to R, if and only if:

A1. ∀x ∈ X , k(·, x) ∈ H ,

A2. ∀x ∈ X , ∀f ∈ H, 〈f, k(·, x)〉H = f(x) .

Here k(·, x) denotes a function mapping X to R by x′ 7→ k(x′, x), ∀x′ ∈ X . The dot (·) notation in

k(·, x) is used in place of a function argument to indicate that k(·, x) should be interpreted as a function
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of the that argument, the first argument in this case. Every Hilbert space which has a reproducing kernel

is called a reproducing kernel Hilbert space (RKHS).

The relationship between positive-definite kernels and RKHSs is known to be two way. On the one hand,

every Hilbert space of functions whose evaluation functional is continuous is a RKHS, having a unique

reproducing kernel associated with it (Steinwart and Christmann, 2008, Thr. 4.20). Continuity of the

evaluation functional, in this case, is equivalent to the same being bounded, i.e.:

∀x ∈ X , ∃cx <∞ : f(x) ≤ cx‖f‖H, ∀f ∈ H . (2.59)

On the other hand, every symmetric, positive-definite function k : X × X → R is the reproducing

kernel of a unique RKHS (Berlinet and Thomas-Agnan, 2004; Steinwart and Christmann, 2008), which

is discussed below.

The pre-Hilbert space: Given a positive-definite kernel k : X × X → R, one can define the set:

H0
k := span{k(·, x) | x ∈ X} , (2.60)

where span denotes the linear span, i.e. the smallest linear space containing the set {k(·, x) | x ∈ X},

which is given by:

span{k(·, x) | x ∈ X} =

{
q∑
i=1

αik(·, xi)

∣∣∣∣∣ q ∈ N, αi ∈ R, xi ∈ X

}
. (2.61)

The setH0
k can then be equipped with an inner product structure by:

∀f, f ′ ∈ H0
k, 〈f, f ′〉k :=

q∑
i=1

q′∑
j=1

αiα
′
jk(xi, x

′
j) , (2.62)

where f :=
∑q

i=1 αik(·, xi) ∈ H0
k and f ′ :=

∑q′

i=1 α
′
ik(·, x′i) ∈ H0

k. EquippingH0
k with 〈·, ·〉k, we have

that (H0
k, 〈·, ·〉k) is an inner product space. However, H0

k is not a Hilbert space, for it is not complete

with respect to the norm ‖·‖k :=
√
〈·, ·〉k. Including the limits of every Cauchy sequence in H0

k then

yields the set Hk, which is the reproducing kernel Hilbert space associated with the kernel k. As H0
k is

isometrically embedded inHk (Steinwart and Christmann, 2008, Thr. 4.21), the inner product 〈·, ·〉k and

the norm ‖·‖k are the same in H0
k and Hk. Therefore, H0

k is referred to as a pre-Hilbert space (Berlinet

and Thomas-Agnan, 2004).
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Representing functions in a RKHS:. According to the definition ofH0
k, any f ∈ Hk can be described

as the limit of a Cauchy sequence {fn}n∈N, fn ∈ H0
k, converging in norm to f . Due to the continuity of

the evaluation functional, we have that:

f, g ∈ Hk, ‖f − g‖k = 0⇐⇒ f = g . (2.63)

To see that, one can consider that:

∀x ∈ X , |f(x)− g(x)| = |〈f, k(·, x)〉k − 〈g, k(·, x)〉k| = |〈f − g, k(·, x)〉k| ≤
√
k(x, x)‖f − g‖k ,

(2.64)

where the first equality comes from the reproducing property of k and the last inequality is by Cauchy-

Schwartz, using ‖k(·, x)‖k =
√
〈k(·, x), k(·, x)〉k =

√
k(x, x) < ∞. As a consequence, in an RKHS,

convergence in norm implies point-wise convergence (Steinwart and Christmann, 2008, Sec. 4.2). By

Equation 2.63, then we can write the given f ∈ Hk as:

f = lim
n→∞

fn = lim
n→∞

qn∑
i=1

αi,nk(·, xi,n) , (2.65)

where αi,n ∈ R and xi,n ∈ X , ∀i ∈ {1, . . . , qn}, n ∈ N. The drawback of using this representation for

theoretical analysis is that, after performing an operation on the sequence elements fn, it may be hard to

prove that the sequence still converges to a function inHk.

Working with the pre-RKHS:. As an alternative, the pre-Hilbert space provides a useful framework

to derive methods involving functions in the RKHS without having to deal with limits of Cauchy se-

quences. From the definition, H0
k forms a dense subspace in Hk, i.e. its closure H0

k is Hk itself.

Consequently, any f ∈ Hk can be approximated by some f0 ∈ H0
k up to arbitrary precision, i.e.:

∀f ∈ Hk, ∀ε > 0, ∃f0 ∈ H0
k : ‖f0 − f‖k ≤ ε . (2.66)

The bounded linear extension theorem (Kreyszig, 1978, Thr. 2.7-11) is a well known result in functional

analysis that allows extending linear operators defined on subspaces of normed vector spaces to their

closure. In the RKHS case, any bounded linear map defined onH0
k can be continuously extended toHk.

Feature maps. Given an arbitrary Hilbert spaceH and a feature map φ : X → H, mapping X intoH,

we have that k(x, x′) := 〈φ(x), φ(x)〉H, ∀x, x′ ∈ X defines a reproducing kernel for the Hilbert space

Hk of functions f : X → R. Notice that the feature spaceH does not need to beHk itself nor a function
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space. However, if H = Hk, φ is called the canonical feature map. In this case, it can be proved that φ

is unique and given by x 7→ k(·, x) (Steinwart and Christmann, 2008).

Restriction of a kernel. If k : X × X → R is a kernel and S ⊂ X , the restriction of k to S × S,

denoted by k|S×S , is a kernel on S (Steinwart and Christmann, 2008, Lemma 4.3). Associated with

k|S×S is the RKHS Hk(S), which is the Hilbert space of functions f : S → R with norm given by

(Aronszajn, 1950, p. 351):

‖f‖Hk(S) := inf
g∈Hk:g|S=f

‖g‖k . (2.67)

2.4.3 RKHS’s and Gaussian processes

The covariance function k of a Gaussian process defines a reproducing kernel and a corresponding

RKHS Hk. Therefore, all the covariance functions in Section 2.2.1 are reproducing kernels. One could

also be led to think that a GP model defines a distribution over the function space given byHk. However,

a function sampled from a GP is, in general, not an element of Hk, as discussed in Wahba (1990, p. 5)

and Rasmussen and Williams (2006, p. 131). On the other hand, the posterior mean of a zero-mean GP

prior is always an element of Hk. In this sense, a GP model can be applied to learn a function f ∈ Hk
using a given set of observations Dn by approximating f with the GP posterior mean µn (Srinivas et al.,

2012; Chowdhury and Gopalan, 2017).

2.5 Topology

Topology (Munkres, 1975) provides a common theoretical framework to analyse mathematical spaces

and mappings between them based only on abstract concepts, such as neighbourhoods and continuity.

This section provides a brief review of some of the topological concepts relevant to this thesis, such

as continuity and compactness. For a better introduction to the topic, the reader is referred to any

introductory book, such as Munkres (1975). In general, books on functional analysis (e.g. Kreyszig

(1978)) and related areas also revise some of these concepts in a more applied way, connected to metric

spaces, for example. Figure 2.3 presents a diagram summarising the relationships between most of the

mathematical spaces described in this chapter.
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FIGURE 2.3: Diagram summarising the relationships between the different kinds of
mathematical spaces reviewed in this background chapter (Source: Wikipedia.org).

2.5.1 Topological spaces

A topological space is the most general type of space in mathematics where a notion of neighbourhood

can be defined. For example, any metric space is a topological space. The concept of neighbourhood

is dependent on the definition of a topology, which is a collection of sets satisfying certain axioms.

With a topology, one can define open and closed sets, which allow the definition of several important

concepts, such as continuous functions, compactness, connectedness, etc., which are very relevant to

other branches of mathematics.

Topology: Given an arbitrary non-empty set X , a collection T of subsets of X is called a topology if

it satisfies the following axioms (Munkres, 1975, p. 76):

A1. ∅ and X are in T.

A2. The union of the elements of any sub-collection of T is in T.

A3. The intersection of any finite sub-collection of T is in T.

If these axioms are satisfied, the pair (X ,T) is called a topological space. It is common not to mention T

and refer to X as a topological space when confusion is unlikely to happen. As examples of topologies,

we have:

E1. T = {∅,X} is called the trivial topology, which is the smallest topology on X .
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E2. T = 2X , the power set of X , i.e. the collection of every subset of X , forms a topology on X ,

which is called the discrete topology.

E3. Let (X , ρ) be a metric space. The default topology on X is induced by the metric ρ and is

called the metric topology. Given δ > 0, let Bδ(x) := {y ∈ X | ρ(x, y) < δ} denote an open

ball around a point x ∈ X . A set U ⊂ X is open in the metric topology if for every point

x ∈ U , there is a δ > 0, such that Bδ(x) ⊂ U .

When X is a vector space embedded with a topology, such as inner product spaces and normed spaces,

X is commonly referred to as a topological vector space.

Open and closed sets: Given a topology T on X , any subset U ∈ T is called an open set, while an

arbitrary subset V ⊂ X is closed if its complement is in the topology, i.e. X\V ∈ T. With this definition,

given an arbitrary point x ∈ X , any open set U ⊂ X such that x ∈ U is called a neighbourhood of x.

Subspaces: Let (X ,T) be a topological space. For any Y ⊂ X , the collection:

TY = {Y ∩ U | U ∈ T} (2.68)

forms a topology on Y called the subspace topology. Then Y is called a subspace of X .

2.5.2 Continuous functions

Continuity in calculus is usually dependent on differentiability. However, there are many other defini-

tions of continuity, such as Lipschitz continuity, which do not imply differentiability and are still useful

for analysis. Topology generalises the definition of continuity to its broadest sense.

Functions and their associated sets: Consider two arbitrary non-empty sets X and Y . A function

f : X → Y is any rule associating elements of X to elements of Y , such that, for every x ∈ X , there

is exactly one y ∈ Y for which f(x) = y. Then X is called the domain of f , while Y is called its

co-domain3. Given an arbitrary set U ⊂ X , the set:

f(U) := {f(x) | x ∈ U} (2.69)

3Munkres (1975) refers to Y as the range of f : X → Y . However, analysts usually define the range of a function, or an
operator, as its image set, i.e. f(X ) (Lax, 2002). To avoid ambiguity, this thesis refers to Y as the co-domain of f .
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is called the image of U under f . If U = X , f(X ) is simply called the image set of f . Similarly, we can

define the pre-image of a set V ⊂ Y under f as:

f−1(V) := {x ∈ X | f(x) ∈ V} , (2.70)

which is the set of elements of X that are mapped to V .

As an alternative notation, a function may also be defined using the symbol 7→ in terms of a formula or

an explicit association rule, such as f : x 7→ x2, where x ∈ R, defines the function f : R → R, such

that f(x) = x2, ∀x ∈ R. In general, given any g : X → Y , the mapping x 7→ g(x), where x ∈ X ,

defines a function mapping X into Y .

Injective, surjective and bijective mappings: A function f : X → Y is said to be injective (or one-

to-one) if images of distinct elements are distinct, i.e. f(x) 6= f(y), for any x, y ∈ X . The function is

surjective (or onto) if its image set is the entire co-domain, i.e. f(X ) = Y . Lastly, f is bijective if it is

both injective and surjective.

Continuity: Let (X ,TX ) and (Y,TY) be topological spaces. A function f : X → Y is said to be

continuous if, for each open subset V of Y , its pre-image is open in X , i.e.:

∀V ∈ TY , f−1(V) ∈ TX . (2.71)

Let X ,Y,Z be topological spaces. Regarding continuous functions, we have (Munkres, 1975):

(1) (Constants) Any f : X → Y that maps all of X to a single point in Y is continuous.

(2) (Compositions) If f : X → Y and g : Y → Z are continuous, their composition g◦f : X → Z

is continuous.

(3) (Mappings into products) Let {fi : X → Y}ni=1, n ∈ N, be a set of continuous functions, then

the function f : X → Yn, defined as f(x) = [fi(x)]ni=1, ∀x ∈ X , is continuous.

(4) (Pasting) Let X = U ∪ V , where U and V are closed in X . If f : V → Y and g : U → Y

are continuous, and f(x) = g(x), ∀x ∈ U ∩ V , then h : X → Y , defined as h(x) = f(x), if

x ∈ U , and h(x) = g(x), if x ∈ V , is continuous.

Observe that under the topological definition of continuity, any continuously-differentiable function as

well as any Lipschitz continuous function is continuous. A Lipschitz continuous function is any function
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f : X → Y , where (X , ρX ) and (Y, ρY) are metrics spaces, such that:

∃`f ∈ R : ρY(f(x), f(y)) ≤ `fρX (x, y), ∀x, y ∈ X . (2.72)

2.5.3 Compact spaces

Compactness is an abstract concept in topology which allows deriving several useful results, such as the

extreme value theorem (Munkres, 1975). There are different definitions of compactness, however, this

thesis is mostly concerned with the one regarding metric spaces.

Compact metric spaces: A metric space X is said to be compact if every sequence in X has a con-

vergent subsequence. A subset U of X is compact if it satisfies this condition when considered as a

subspace of X .

Properties of compact spaces: Consider an arbitrary metric space X , and let U ⊂ X be a compact

subset of X . As properties of compact spaces, we have (Munkres, 1975; Kreyszig, 1978):

P1. U is closed and bounded in X .

P2. U is complete as a metric space.

P3. If f : X → Y is a continuous function and Y is a metric space, f(U) is compact in Y .

P4. If f : X → R is continuous, f attains a maximum and a minimum at some points in U .

Notice that the definition of compactness implies that, if U ⊂ X is compact, then U is closed and

bounded in X . However, the converse does not necessarily imply compactness, except when X is a

finite-dimensional normed vector space, such as Rd (Kreyszig, 1978).

2.6 Measure theory

Probability, random variables and integration are intrinsically connected to measure theory, which pro-

vides a framework to formalise and analyse such concepts. This section briefly reviews some of the

basics of measure theory connected to topics in this thesis, especially Chapter 6. For a more in-depth

formal introduction to probability and measure theory, the reader is referred to books on the topic, such

as Bauer (1981) and Durrett (2010). For vector-valued random variables, Li and Queffélec (2017) pro-

vides a formal introduction. Vector-valued integration is also in Mandrekar and Rüdiger (2015).
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2.6.1 Measures, σ-algebras and measurable functions

Measures generalise physical measurement concepts such as mass, length and volume to arbitrary math-

ematical spaces. They are essentially functions which assign a number to a set.

σ-algebra: Given a non-empty set X , a collection A of subsets of X is called a σ-algebra (or sigma-

algebra) if it meets the following requirements:

A1. X ∈ A ;

A2. A ∈ A=⇒X\A ∈ A

A3. for every sequence {An}n∈N of sets in A,
⋃
n∈NAn ∈ A .

Here X\A represents the complement of set A in X . To exemplify, the smallest σ-algebra in a set X is

simply the collection {X ,∅}. The extreme opposite example is the power set, denoted as 2X , which is

the collection of all subsets of X .

One can also define σ-algebras in terms of other sets and collections. Given a σ-algebra A in X and any

U ⊂ X , not necessarily in A, the collection:

U ∩ A := {U ∩ V | V ∈ A} (2.73)

defines a σ-algebra in U . Intersections of σ-algebras are also σ-algebras, so that, given any collection C

of subsets of X , one can define A(C) as the intersection of all σ-algebras on X containing C. Then A(C)

is the smallest σ-algebra on X containing C. With this definition, given a topological space (X ,T),

one can define the Borel σ-algebra B(X ), which is the σ-algebra generated by the open sets of X , i.e.

B(X ) = A(T). It is common to assume this σ-algebra by default when dealing with topological spaces,

such as metric spaces. For Euclidean vector spaces, i.e. X = Rd, d ∈ N, the notation Bd := B(Rd)

specifies the σ-algebra of Borel sets of Rd (Bauer, 1981).

Measure: A measure M is any set function defined on a σ-algebra A and valued in R ∪ {−∞,+∞}

which satisfies the following axioms:

A1. M [∅] = 0 ;

A2. M [A] ≥ 0, ∀A ∈ A ;

A3. for every sequence {An}n∈N of disjoint sets in A, M
[⋃

n∈NAn
]

=
∑

n∈NM [An] .
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As a few examples of measures, we have Dirac measures, defined as:

x ∈ X , ∀A ∈ A, Dx[A] =

1, x ∈ A

0, x /∈ A
, (2.74)

counting measures, such as the cardinality of a set C[A] = |A|, i.e. the number of elements of A, and

probability measures.

Probability measures: Considering the previous settings, a probability measure is any measure on

A that satisfies the extra requirement that P [X ] = 1. Dirac measures, for example, are probabil-

ity measures. Discrete probability measures can be directly formulated from them as weighted sums

P [A] =
∑n

i=1 piDxi [A], ∀A ∈ A , given that
∑n

i=1 pi = 1, pi ≥ 0 and {xi}ni=1 ⊂ X .

Related spaces: Given a set X and any σ-algebra A of subsets of X , the pair (X ,A) is called a

measurable space. Adding a measure M on A, the triplet (X ,A,M) is called a measure space. If the

given measure is a probability measure, the space (X ,A, P ) is called a probability space. In this case,

the set X is usually referred to as the event (or sample) space, A is the σ-algebra of events in X , and the

elements ω ∈ X are called elementary events.

Measurable functions: Given two measure spaces (X ,A) and (X ′,A′), a function f : X → X ′ is

said to be A-A′-measurable if:

f−1(A′) ∈ A, ∀A′ ∈ A′ , (2.75)

where f−1(A′) denotes the pre-image of set A′ under f . If f is a real-valued function, i.e. X ′ = R,

and A′ is the σ-algebra of Borel sets in R, i.e. A′ = B(R), one can simply say that f is A-measurable.

Related to measurable functions, we have the following properties and examples (Bauer, 1981):

(1) Every constant-valued mapping f : X → X ′ is A-A′-measurable.

(2) IfX andX ′ are topological spaces, every continuous function f : X → X ′ is Borel-measurable,

i.e. f is B(X )-B(X ′)-measurable.

(3) If f1 : (X1,A1)→ (X2,A2) and f2 : (X2,A2)→ (X3,A3) are measurable functions, then the

composed function f1 ◦ f2 is A1-A3-measurable.
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σ-algebra generated by a function: Consider a set of functions {fi}ni∈I , where fi : X → X ′i and

(X ′i ,A′i) is a measurable space, i ∈ I, we have that any:

A(fi) := f−1i (A′i) = {f−1i (A′)|A′ ∈ A′i} , (2.76)

defines a σ-algebra in X . In particular, A(fi) is the smallest σ-algebra in X with respect to which fi is

measurable. Furthermore, we have that:

A(fi; i ∈ I) := A

(⋃
i∈I

f−1i (A′i)

)
(2.77)

is also a σ-algebra and is called the σ-algebra generated by the mappings fi (and their respective mea-

surable spaces (X ′i ,A′i)).

Almost surely (a.s.) and almost everywhere (a.e.): These two terms are common in probability and

measure theory. The first term concerns events in a probability space, while the second refers to functions

on any measurable space. Consider a probability space (X ,A, P ). An event A ∈ A is said to happen

almost surely (a.s.) if P [A] = 1. Two A-measurable functions f and g agree almost everywhere (a.e.),

if the set where they disagree has measure zero, i.e. P [{x ∈ X | f(x) 6= g(x)}] = 0. As an example

consider X := Rd, any σ-algebra A on Rd, and the function f(x) := a · x, a ∈ Rd. With respect to the

Dirac measure at 0, P := D0, one can say that, given x ∈ X , f(x) = 0 almost surely. Although f itself

is not zero on most of the domain (for a 6= 0), we have that D0[{x ∈ X | f(x) = 0}] = 1, regardless.

In this same example, one can also say that f is zero almost everywhere, i.e. f = 0 (a.e.).

2.6.2 Integration with respect to a measure

Measures allow generalising the concept of integration to arbitrary domains. For this thesis, an important

characteristic is that measures allow unifying integration with respect to both discrete and continuous

probability measures into a single operation.

To define the general concept of integration with respect to a measure, let us first consider scalar real-

valued functions and then we can extend it to the case of vector-valued functions. We will first need to

review a few fundamental concepts before proceeding. For the definitions, we will consider an arbitrary

measurable space (X ,A) and any measureM on A. As a building block for the next steps, an elementary

(or simple) function is any function u : X → R+
0 , which is A-B1-measurable, or simply A-measurable,
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and which can be described as:

u =
n∑
i=1

αi1Ai , (2.78)

where n ∈ N, α1. . . . , αn ∈ R+
0 , {Ai}ni=1 ⊂ X is a collection of pairwise disjoint subsets of X , and

1Ai are indicator functions, i.e.:

A ⊂ X , ∀x ∈ X , 1A(x) :=

1, x ∈ A

0, x /∈ A .
(2.79)

Given a measure M on A, the integral of u with respect to M , or the M -integral of u, is then defined as:∫
udM :=

n∑
i=1

αiM [Ai] . (2.80)

Now given any A-measurable non-negative function f , one can show that there exists an increasing

sequence {un}n∈N of elementary functions such that f = supn un (Bauer, 1981, Thr. 2.3.6). Then the

M -integral of f over X is defined as:∫
f dM := sup

n∈N

∫
un dM . (2.81)

Finally, the integral of any A-measurable function f can be defined in terms of the integral of the positive

f+ := sup(f, 0) and the negative f− := − inf(f, 0) parts of f . A function f is (M -)integrable if it is

A-measurable and both
∫
f+ dM and

∫
f− dM are finite. Then the M -integral of f is simply:∫

f dM :=

∫
f+ dM −

∫
f− dM . (2.82)

Notice that this integral is over the entire X . Given a set A ∈ A, the integral of f over A is defined as:∫
A
f dM :=

∫
f1A dM (2.83)

To emphasise the dependence on the inputs x ∈ X , one may also equivalently write:∫
A
f(x) dM(x) :=

∫
A
f dM . (2.84)

Properties: Let f and g be M -integrable functions. The following are properties of the integral de-

fined above:

P1. Linearity: ∀α, β ∈ R,
∫
αf + βg dM = α

∫
f dM + β

∫
g dM ;

P2. Monotonicity: f ≤ g (a.e.) =⇒
∫
f dM ≤

∫
g dM ;
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P3. f = 0 (a.e.)⇐⇒
∫
f dM = 0.

As an example of integration with respect to a measure, consider a discrete probability measure P :=∑n
i=1 piDxi , where

∑n
i=1 pi = 1, pi ≥ 0, ∀i ∈ {1, . . . , n}, defined on (X ,A). The P -integral of an

integrable function f : X → R is then given by:∫
f dP =

n∑
i=1

pif(xi) , (2.85)

which is equivalent to the expected value of f under P , discussed in the next section. However, if P

was a continuous probability measure, one may need to define a density to compute the integral, which

is discussed below.

Densities: For every non-negative measurable function f on (X ,A,M), the map:

U 7→
∫
U
f dM , (2.86)

where U ∈ A, defines a measure V on A (Bauer, 1981, Thr. 2.9.1). Then the function f is called the

density of V relative to M . In this case, one may write:

f =
dV

dM
, (2.87)

which is a Radon-Nikodym derivative (Durrett, 2010). If (X ,A) = (Rd,Bd), d ∈ N, and M is the

Lebesgue measure on Rd, densities of continuous probability measures P on X relative to the Lebesgue

measure are simply the well-known probability density functions. Then the P -integral of a function

g : Rd → R is simply given by: ∫
g dP =

∫
Rd
g(x)p(x) dx , (2.88)

where p = dP
dx is the density of P relative to the Lebesgue measure on Rd, i.e. the probability density

function of P .

Lebesgue measure. The Lebesgue measure Ld is a measure on the σ-algebra Bd of Borel sets of Rd,

which connects the concept of integration with respect to a measure back to the conventional (Riemann)

integrals. Given a Ld-measurable real valued function, we have the equivalence:∫
A
f dLd =

∫
A
f(x) dLd(x) =

∫
A
f(x) dx , ∀A ∈ Bd . (2.89)
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As seen, the Lebesgue measure corresponds to the measures of length, area and volume from 1-, 2- and

3-dimensional Euclidean spaces, generalised to arbitrary d-dimensional Euclidean spaces.

Vector-valued integrals

The previous presentation covered the case of integrals of real-valued functions with respect to mea-

sures. This section briefly extends integration to the vector-valued case. The extension is trivial in the

finite-dimensional case. However, when functions are valued in a infinite-dimensional space, a special

treatment is needed and different concepts of integral exist (see Mandrekar and Rüdiger, 2015, Ch. 2).

The finite-dimensional case: Let f : X → Rd, d ∈ N, be a vector-valued function. If f :=

[f1, . . . , fd]
T is such that every fi : X → R, i ∈ {1, . . . , d}, is M -integrable on (X ,A,M), the

M -integral of f is defined (Bauer, 1981, p. 255) as the vector:∫
f dM :=

[∫
f1 dM, . . . ,

∫
fd dM

]T
. (2.90)

The Bochner integral: Consider an arbitrary measure space (X ,A,M) and a Banach space F of

arbitrary dimension, not necessarily finite. A function f : X → F is said to be Bochner-integrable with

respect to M if f is A-measurable and if x 7→ ‖f(x)‖F is M -integrable, i.e.
∫
‖f‖F dM < ∞. Denote

by L1F (M) the space containing all Bochner-integrable functions on (X ,A,M). As in the real-valued

case, let us first consider simple functions. In the Banach space case, a simple function is any function

u : X → F that can be described as u =
∑n

i=1 ui1Ai , where ui ∈ F and Ai ∈ A are mutually disjoint

sets, i.e. i 6= j=⇒Ai∩Aj = ∅, with M [Ai] <∞. The Bochner integral of u with respect to M is then

defined as: ∫
u dM :=

n∑
i=1

uiM [Ai] ∈ F . (2.91)

One can prove that u 7→
∫

u dM defines a bounded linear operator on the space of simple functions,

which is dense in L1F (M), and is therefore extensible to the entire space L1F (M) of Bochner-integrable

functions on (X ,A,M) (Dinculeanu, 2000, p. 15). Given a function f ∈ L1F (M), the function∫
f dM ∈ F is called the Bochner integral of f with respect to M . When the Banach space F is

the finite-dimensional Euclidean space Rd, d ∈ N, the Bochner integral is equivalent to the integral

presented before in Equation 2.90.
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As in the real-valued case, the restriction of the Bochner integral to a measurable subset A ∈ A is given

by: ∫
A

f dM :=

∫
f1A dM . (2.92)

Among the properties of the Bochner integral, we have that the integral is linear and bounded by:∥∥∥∥∫ f dM

∥∥∥∥
F
≤
∫
‖f‖F dM <∞ . (2.93)

Given another Banach space G and a continuous linear operator L : F → G, we also have that:∫
Lf dM = L

∫
f dM ∈ G . (2.94)

2.6.3 Random variables

Using the tools from measure theory, the concept of a random variable can be generalised and formalised

in a solid theoretical framework. Given a probability space (E ,E, P ) and a measurable space (E ′,E′),

a random variable is any function ξ : E → E ′ that is E-E′-measurable. In this case, ξ is also called a

E ′-valued random variable or a (E ′,E′)-random variable on (E ,E, P ). For any ω ∈ E , ξ(ω) is called a

realisation of ξ.

Distribution: Let P {ξ ∈ A′} := P [ξ−1(A′)], A′ ∈ E′, denote the probability of the event ξ lies in

A′, i.e. the event that ξ is realised in A′. The mapping A′ → P {ξ ∈ A′} is the image measure of P

under ξ, denoted as Pξ, which defines a measure on (E ′,E′). Pξ is referred to as the distribution of ξ

with respect to P , so that one may write ξ ∼ Pξ .

Expectation: The expected value of a real-valued integrable random variable ξ on (E ,E, P ) is defined

as:

E[ξ] = EP [ξ] :=

∫
ξ dP . (2.95)

Using the image measure Pξ of ξ, the expected value of a real-valued function f of ξ is given by:

E[f(ξ)] = EPξ [f ] =

∫
f dPξ . (2.96)

Setting f(x) = x,∀x ∈ R, we also have that E[ξ] =
∫
E x dPξ(x). Given a σ-sub-algebra Z ⊂ Z, ξ may

not be measurable with respect to Z, but one can still compute expected values of ξ for every event set

in Z. Define E[ξ|Z], the conditional expectation of ξ given Z. E[ξ|Z] is a Z-measurable random variable,
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such that: ∫
Z
E[ξ|Z] dP =

∫
Z
ξ dP, ∀Z ∈ Z , (2.97)

which means that every realisation of E[ξ|Z] is an expected value of ξ given an event Z ∈ Z.

Considering a probability space (E ,E, P ), σ-sub-algebras Z ⊂ E and U ⊂ E, and integrable real-valued

random variables ξ and χ, the following are properties of the conditional expectation (Bauer, 1981, Sec.

10.1):

P1. E[E[ξ|Z]] = E[ξ];

P2. ξ is Z-measurable =⇒ E[ξ|Z] = ξ (a.s.);

P3. ξ = χ (a.s.) =⇒ E[ξ|Z] = E[χ|Z] (a.s.);

P4. c ∈ R, ξ = c (a.s.) =⇒E[ξ|Z] = c (a.s.);

P5. ∀α, β ∈ R, E[αξ + βχ|Z] = αE[ξ|Z] + βE[χ|Z] (a.s.);

P6. ξ ≤ χ (a.s.) =⇒ E[ξ|Z] ≤ E[χ|Z] (a.s.);

P7. ξ is Z-measurable =⇒ E[ξχ|Z] = ξE[χ|Z] (a.s.);

P8. U ⊂ Z ⊂ E =⇒ E[E[ξ|Z]|U] = E[E[ξ|U]|Z] = E[ξ|U] (a.s.).

The extension of the concept of expectation to vector-valued random variables ξ : E → F , where F is a

Banach space, follows via Bochner integration (see Section 2.6.2) and other types of integration, which

may depend on weaker assumptions, such as the Pettis integral (Mandrekar and Rüdiger, 2015).

2.6.4 Stochastic processes

This section reviews some measure-theoretic concepts related to stochastic processes, which are for-

mally defined below. Gaussian processes, as introduced in Section 2.2, are one example of such pro-

cesses. The concept of a stochastic process, however, is abstract enough to analyse other types of pro-

cesses, such as data streams and algorithmic choices. In the case of Bayesian optimisation, for example,

Chowdhury and Gopalan (2017) treat both the algorithm’s queries {xt}∞t=1 and the observation noise

{νt}∞t=1 sequences as stochastic processes.

This section starts by formally defining stochastic processes, and then introducing the related concepts

of filtrations, martingales and predictability of random sequences, which are important for the theoretical

results in Chapter 6. For the definitions below, consider an arbitrary probability space (E ,E, P ) and a

non-empty set I.
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Processes: Any quadruple (E ,E, P, {ξt}t∈I), where {ξt}t∈I is a family of random variables on (E ,E)

with values all in the same measurable space (W,W), is called a stochastic process. The space (W,W)

is referred to as the state space of the stochastic process, while the set I is called index set, parameter

set or time set4. For every ω ∈ E , the mapping t 7→ ξt(ω) can be referred to as a path, trajectory or

realisation of the process. If (E ,E, P ) is already given or implicit, one may simply refer to {ξt}t∈I as a

stochastic process (Bauer, 1981).

Filtrations: Let I be a partially ordered set. A family {Ft}t∈I of σ-sub-algebras of E is called a

filtration in E if:

∀i, j ∈ I : i ≤ j =⇒ Fi ⊂ Fj . (2.98)

Given a stochastic process {ξt}t∈I , we say that {ξt}t∈I is adapted to a filtration {Ft}t∈I if every ξt is

Ft-E′-measurable. As an example, if I = N, for any t ∈ N, we have that F0
t := A(ξi; i ∈ {1, . . . , t})

defines the smallest σ-algebra with respect to which all {ξi}ti=1 are measurable (see Equation 2.77).

Therefore, {ξi}ti=1 is adapted to the filtration {F0
t }t∈N, which is called the canonical filtration.

Predictability: Let I := {0, 1, 2, . . . }. Given a filtration {Ft}t∈I in E, a sequence of random variables

{ξt}t∈I on (E ,E, P ) is said to be predictable with respect to {Ft}t∈I if ξt is Ft−1-measurable, for all

t ≥ 1 (Durrett, 2010).

Martingales: Let I be a partially ordered set. Consider {ξt}t∈I as a family of real-valued integrable,

random variables, i.e. E ′ = R and E′ = B1, adapted to the filtration {Ft}t∈I . Then {ξt}t∈I is a

super-martingale if, for all pairs i, j ∈ I with i ≤ j, the following condition is satisfied:

∀i, j ∈ I : i ≤ j =⇒ E[ξj | Fi] ≤ ξi (a.s.) . (2.99)

If, instead, {−ξt}t∈I satisfies the above condition, then {ξt}t∈I is a sub-martingale. Lastly, if {ξt}t∈I
is both a super-martingale and a sub-martingale, meaning that equality holds in the above equation,

{ξt}t∈I is a martingale.

4In probability theory, the term stochastic process is commonly reserved to collections of random variables indexed by
a uni-dimensional partially ordered set (Bauer, 1981), such as N, while random field refers to cases with higher-dimensional
index sets, such as Rd with d > 1 (Berlinet and Thomas-Agnan, 2004). However, this thesis adopts the broader definition.



2.7 SUMMARY 44

2.7 Summary

This chapter introduced the theory behind the main concepts applied by the methods that this thesis

proposes. Bayesian optimisation and Gaussian processes are omnipresent throughout the contributing

chapters. Reproducing kernel Hilbert spaces, besides their connection to GPs, have been applied to

formulate parametric models for control policies in Chapter 4. Optimisation problems affected by un-

certain inputs are approached by Chapter 5 and Chapter 6, whose methods involve Section 2.2.4 and the

background on topology and measure theory.

For more information on theoretical details, the machine learning literature is filled with reference ma-

terial on the topics introduced here. Murphy (2012) presents a general overview on several probabilistic

learning methods. For a better introduction to Gaussian processes, a popular textbook is Rasmussen and

Williams (2006). Theory on reproducing kernel Hilbert spaces is found in Berlinet and Thomas-Agnan

(2004) and Steinwart and Christmann (2008), and, for a more practical perspective on kernel methods,

Schölkopf and Smola (2002) is recommended. Lastly, Bayesian optimisation has been a very active re-

search area, so that material on it is mostly found in articles (Brochu et al., 2010; Shahriari et al., 2016),

but a book (Mockus, 1989) and other theses (Lizotte, 2008; Marchant Matus, 2016) are also available.



CHAPTER 3

Active perception for modelling energy consumption

3.1 Introduction

Mobile robots have become successful tools for outdoor applications, e.g. planetary exploration (Carsten

et al., 2007), mining operations (Brown, 2012), agriculture (Underwood et al., 2017) and many others.

Contrasted with indoors, outdoor environments offer huge variability and challenges that the robot’s nav-

igation system may not be prepared for. Therefore, to enable robots to autonomously navigate through

multiple types of environment, navigation systems are required to adapt to unforeseen challenges.

A critical factor that influences a robot’s autonomy is energy consumption (Sun and Reif, 2005; Tokekar

et al., 2011; Pereira et al., 2013; Morbidi et al., 2016). Mobile robots usually carry a limited amount of

power supply on board, most of which is spent by the robot’s propulsion system, whether it is aerial, ter-

restrial or aquatic. In addition, following paths that demand too much power from the robot’s propulsion

system can cause excessive stress to the platform. Navigation systems for autonomous robots should

then be able to take energy consumption as a cost factor when planning trajectories.

Traversability models (Martin et al., 2013) that take into account power demands can aid robotic navi-

gation systems to find energy-efficient paths. Underwater robots, for example, may be subject to strong

ocean currents depending on the path they take (Pereira et al., 2013). Aerial robots can take advan-

tage of the wind to facilitate their locomotion (Lawrance and Sukkarieh, 2009). In the case of ground

robots, properties of the terrain can also directly influence power consumption. Most of these factors,

however, are hard to model: variations in roughness (Molino et al., 2007), terrain slope (Sun and Reif,

2005), and interactions between the wheels and the soil (Ben Amar and Bidaud, 1995). Altogether, these

environment-related complexities introduce uncertainty in the estimation of energy demands.

45
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This chapter presents 1 a method to find energy-efficient paths over unknown terrains while learning a

power-consumption model over the terrain. The method uses only information from estimates of the

robot’s pose and power consumption collected as the robot travels from start to goal locations. An active

perception approach is applied to select informative paths between the two locations according to the

estimates given by the model. Specifically, this work provides the following contributions:

(1) a Gaussian process model to estimate the power consumption of a robot moving at constant

linear speed as a function of the robot’s location and heading direction;

(2) a path-planning method that explores paths between two fixed locations building a model of

the robot’s power consumption over the terrain using Bayesian optimisation.

The remainder of this chapter is organised as follows. The next section reviews relevant prior work in

this area. Section 3.3 specifies and formulates the problem of modelling energy consumption, which is

followed by a description of the proposed path-planning algorithm in Section 3.4. Then, in Section 3.5

experimental results are presented both in simulation and on a physical robot to evaluate the proposed

approach. Finally, Section 3.6 concludes and proposes some directions for future work.

3.2 Related work

This section reviews some relevant work from the area of energy-aware motion planning and Bayesian

approaches applied to planning under uncertainty.

3.2.1 Vehicle-dynamics control

Heavy robots usually spend most of their energy supply on mobility. Therefore, research effort has been

put into modelling the power demands of traction systems to provide cost models for energy-aware path

planners. In this sense, energy efficiency can be achieved by motion control strategies that avoid costly

movements like turning (Morales et al., 2006) and others demanding high torque (Salan et al., 2015),

which can be estimated based on a dynamics model. Another approach is to directly optimise velocity

profiles (Kim and Kim, 2007; Tokekar et al., 2011) for a given system. In general, these methods are

dependent on parameters that require extensive evaluation and analysis of the robot in experiments and

are highly vehicle dependent.

1This work has been partially presented at the 2016 Australasian Conference on Robotics and Automation (ACRA) as
Oliveira et al. (2016)
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3.2.2 Elevation-based strategies

Another strategy is to model power usage as a function of terrain properties, approaching it from a

mechanical energy point of view. If the geometry of the terrain is known a priori, different techniques

using grid-based elevation maps can be applied to estimate energy consumption along a path. This

approach in general infers the power costs associated with individual actions over the terrain as a function

of local slope angles and friction coefficients (Sun and Reif, 2005; Liu et al., 2008; Anuntachai et al.,

2014; Ganganath et al., 2014). The energy expenditure of a path is then computed as the sum of the

individual costs associated with each state transition on the path. However, these strategies require

accurate information about the terrain type and its characteristics, besides the vast amounts of sensor

data necessary to build the elevation models, which has its own challenges (Plagemann et al., 2008).

3.2.3 Bayesian approaches

Most of the approaches discussed so far depend on deterministic cost models that allow path planners to

compute the cost of a path. Alternatively, Bayesian approaches allow deriving probabilistic cost maps

to plan when uncertainty affects the estimation of cost factors.

Plonski et al. (2013) present a Bayesian approach to model energy. They use Gaussian process regression

to build a solar-power map over an area, and then use this map to plan energy-optimal paths using

empirical cost models to predict the energy spent on individual actions. Similarly, Martin and Corke

(2014) present an approach to map the robot’s power usage over the terrain via GP regression. In their

case, at each iteration, the current GP mean is used as a cost map for planning using D* (Stentz, 1994)

and then updated with new power-consumption measurements collected along the way. A limitation of

their model is that it does not consider uneven terrains, where the robot’s heading direction can affect

power consumption. Additionally, the uncertainty of the model’s predictions is not taken into account

during the planning phase.

Marchant and Ramos (2014) present a Bayesian optimisation approach to plan continuous paths enabling

robots to monitor spatial-temporal environmental processes. They use a GP to learn a model of the

physical phenomena that the robot is monitoring, while BO is employed to select the most informative

paths based on a path-integral acquisition function. In this problem, the main goal is to build a model of

the environmental process throughout the whole area of the experiment, with less uncertainty in areas
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close to peaks of the process. There is no goal location for the robot to reach, and the robot’s heading

does not affect the readings. However, a similar framework can be applied to the problem in this chapter.

3.3 Problem formulation

Consider the problem of enabling a robot to learn a model that can be used to find energy-efficient paths

in an obstacle-free area over a terrain with smooth elevation changes. The paths are taken from a family

of parametric curves ξ ∈ C and constrained by a given fixed starting pose (x0, y0, θ0) and a goal location

(xf , yf ). Since the search is for energy-efficient paths, the model should provide less uncertainty in the

predictions for paths that will yield better energy savings. In addition, assume that the only information

the robot has access to are noisy estimates of its instantaneous power consumption w and its pose. The

robot has no access to information about the terrain itself, such as slope, roughness, elevation maps, etc.

The total amount of energy E needed to execute a path ξ ∈ C can be obtained by integrating the

instantaneous power consumption w along the path over time, i.e.:

E[ξ] =

∫ tf

t0

w(t) dt , (3.1)

where t0 corresponds to the starting time, when the robot leaves the initial configuration (x0, y0, θ0),

and tf corresponds to the final time, when the robot reaches the final location (xf , yf ).

3.3.1 Assumptions

The modelling approach in this work assumes power consumption to be a function only of the robot’s

configuration along the path, which is a 2D pose, i.e. ξ(t) = (x(t), y(t), θ(t)) ∈ X , where X =

R2 × [−π, π] is the robot’s configuration space. The robot is assumed not to move backwards. Poses

then inform the direction the robot is heading, which can affect power consumption over uneven terrains,

depending on whether the robot is moving upwards or downwards. However, the pose alone does not

provide enough information about other variables that can also affect the power consumption of the

robot. Hence the proposed methodology considers a set of plausible assumptions. Firstly, the variations

in the amount of power drawn by the traction system when the robot is in motion are usually much

higher than the ones presented by the other on-board systems in any reasonably-sized robot. So one

can assume that the power consumption of these other systems is approximately constant. Secondly,

the terrain is assumed to be a static environment, so that its characteristics do not change over time.
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Lastly, in experiments the robot will travel at a constant linear speed with angular speed low enough,

so that turning movements do not significantly affect power consumption. In addition, a learning model

that inherently considers noise in the underlying power-consumption sampling process should be able

to adapt to the noise introduced by the former limitations.

3.3.2 The task

Considering the given modelling assumptions, predicting the amount of energy required to execute a

particular path is equivalent to providing a model to predict the expected instantaneous power consump-

tion w(t) = w(ξ(t)) at each robot configuration ξ(t) ∈ X along the path and then integrating over these

estimates. The task is to learn a function w : X → R mapping robot configurations to power by using

only pose estimates and power-consumption data collected along paths selected for execution. Prior

knowledge about the environment or the robot’s internal dynamics are considered unavailable.

3.4 Methodology

This section proposes an active perception approach to solve the task above. The method applies

Bayesian optimisation to minimise the robot’s integrated power consumption along paths while learning

a model of the robot’s power consumption over the terrain. Active perception here refers to the process of

actively selecting locations where to sense the environment and collect information to update an internal

model of it. The power-mapping function w : X → R is modelled as a sample from a Gaussian process.

Given a family of parameterised curves, BO is then applied to select paths by maximising an acquisition

function over GP estimates of the paths’ energy requirements. Section 3.4.1 presents an overview of the

system. The GP modelling approach is introduced in Section 3.4.2. Finally, Section 3.4.3 presents the

BO method for path planning.

3.4.1 System overview

Figure 3.1 shows a simplified diagram of the proposed system. The GP model is designed to learn

the expected power usage of the robot as it traverses the terrain. The model uses power-consumption

measurements from traversed locations to infer the power necessary to traverse other locations, taking

into account the heading direction as well. The BO algorithm queries the GP for individual estimates of

power requirements along a candidate path. By maximising a utility function, the algorithm selects the
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FIGURE 3.1: System diagram. The GP learns a model of the power consumption of
the robot from the samples collected as it moves. The BO algorithm maximises a utility
function over the GP estimates and selects the best candidate path. The robot executes
the path, and the GP model is updated.

next path to follow. The paths are selected from a family of parametric curves connecting fixed start and

goal locations. The selected path is given to the robot, which executes it, always starting from the same

location, analogue to an episodic setting (Deisenroth, 2013). The power-consumption measurements

collected along the path are fed back as observations to the GP, updating the model. This cycle repeats

in each iteration of the BO algorithm. As iterations are performed, the expected amount of energy

required to execute a path, as predicted by the GP, converges to the true amount of energy consumption.

3.4.2 GP model for power consumption

As a Bayesian non-parametric method, Gaussian process (GP) regression (Rasmussen and Williams,

2006) offers a powerful tool to model non-linear spatial processes. For this reason, a GP model is

proposed to estimate the robot’s instantaneous power consumption w over the configuration (or pose)

space X . With this model, a path’s energy requirement can be predicted as an integral over the GP.

Power-consumption modelling

The GP power-consumption model is constructed with a constant prior mean:

mw(x) := ms, ∀ x ∈ X , (3.2)

where ms is a hyper-parameter which in practice corresponds to the power consumed when the robot is

stationary. The covariance between two power-consumption values w(x) and w(x′), where x,x′ ∈ X
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are given poses, is modelled using a version of the squared-exponential kernel:

kw(x,x′) := σ2f exp

(
−1

2
ρ2q(x,x

′)
)
, (3.3)

where ρq(x,x′) is a custom distance metric, defined below.

As orientation angles have a periodic nature, the Euclidean distance metric is not suitable to compute

the distance between two different poses. For example, Euclidean distances assume that 0 and 2π are

different numbers, while they mean the same as angles. To address this, a more suitable metric for the

angular component is the following:

∀θ, θ′ ∈ [−π, π], |θ − θ′|cos := cos−1(cos(θ − θ′)) ∈ [0, π] , (3.4)

which corresponds to the shortest arc between the two given orientation angles. Using this angular

metric, the distance between two poses x := (x, y, θ) and x′ := (x′, y′, θ′) becomes:

ρq(x,x
′) =

√
(x− x′)2

l2x
+

(y − y′)2
l2y

+
|θ − θ′|2cos

l2θ
, (3.5)

where lx, ly, lθ are positive length-scale hyper-parameters also learnt from a training set.

With this kernel, the covariance between function values at two different points x and x′ will smoothly

decay according to their distance. Consequently, this covariance function is suitable for modelling power

consumption as a Gaussian process on smooth natural terrains, i.e. terrains which do not have abrupt

transitions of their surface characteristics.

All in all, the proposed GP model is fully determined by the hyper-parameters (ms, σf , lx, ly, lθ, σν).

In experiments, these values were determined by maximising the log-marginal likelihood in a training

phase on an initial set of observations. See Section 2.2.2 for more details about hyper-parameter learning.

Energy integration

Let µw and σ2w denote the posterior mean and variance for the GP modelling w. Given a set of poses

{ξ(ti)}ni=0 sampled along a candidate path ξ ∈ C , the total energy expenditure for that path can be
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modelled as E[ξ] ∼ N(µE [ξ], σ2E [ξ]), where:

µE [ξ] =
n−1∑
i=0

µw(ξ(ti))∆ti , (3.6)

σ2E [ξ] =

n−1∑
i=0

σ2w(ξ(ti))∆t
2
i . (3.7)

The equation above provides us with an approximation of the true integrated energy consumption esti-

mate from a GP, which would in fact be:

E[E[ξ]] =

∫
t
µw(ξ(t)) dt , (3.8)

V[E[ξ]] =

∫
t

∫
t′
kw|D(ξ(t), ξ(t′)) dt′ dt , (3.9)

where kw|D here denotes the posterior covariance function. By using only the predictive variance at

the positions along the path, Equation 3.7 ignores the correlation between power-consumption values at

different positions. However, the approximation in Equation 3.7 is computationally less expensive and

allows for satisfactory results in practice, as the experiments (Section 3.5) will show.

Since the robot has no access to information about the terrain elevation, the time interval between two

consecutive poses on a path can be estimated with a linear 2D motion model with constant speed v.

Given two consecutive poses ξ(ti) = (x(ti), y(ti), θ(ti)) and ξ(ti+1) = (x(ti+1), y(ti+1), θ(ti+1)), we

have that:

∆ti ≈
√

(x(ti+1)− x(ti))2 + (y(ti+1)− y(ti))2

v
, (3.10)

where v > 0 is the robot’s travelling speed, assumed constant. This approximation does not consider

height differences, which could lead to estimation errors in areas of high slope. However, for typical

smooth terrains, this should not lead to significant errors in the estimation of E.

3.4.3 Bayesian optimisation for path selection

Having a GP model for power consumption and a method to predict the total energy expenditure for a

candidate path, this section proposes a BO algorithm for path selection. The first part presents a path

acquisition function to select candidate paths with BO based on the proposed GP model (Section 3.4.2).

As paths live in a function space, which is infinite dimensional, direct optimisation is not possible. So a

parameterisation of the paths as splines is proposed. Lastly, the BO path-planning algorithm is described.
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Acquisition function

The method proposed here applies BO to optimise over a model mapping paths to energy-consumption

estimates. A functionR[ξ] works as an acquisition function for BO based on a candidate path’s expected

energy consumption, modelled by µE [ξ], and the uncertainty about it, σ2E . One of the criteria that allows

BO to balance these two quantities, i.e. energy expenditure and uncertainty, is the upper confidence

bound (UCB, see Section 2.3.2). Given the energy prediction model, an upper confidence bound over

the negative of the energy estimate is given by:

R[ξ] = −µE [ξ] + λσE [ξ] = −
n−1∑
i=0

µw(ξ(ti))∆ti + λ

(
n−1∑
i=0

σ2w(ξ(ti))∆t
2
i

)1/2

, (3.11)

where λ is a positive scalar which controls the exploration-exploitation trade-off. Higher values of λ

increase exploration, giving high reward for selecting paths whose energy estimate has higher uncer-

tainty. Observations along such paths might provide useful information to improve the accuracy of the

GP estimates. On the other hand, lower values of λ favour exploitation, with the acquisition function

preferring paths with low expected energy consumption.

Path parameterisation

In principle, the framework in this chapter could work with any class of parameterised curves to rep-

resent candidate paths. However, cubic splines provide a class of parametric curves C that is simple

to work with and flexible enough to assess the capabilities of a learning algorithm for the problem

in Section 3.3. Let ξα : [0, 1] → X represent the path corresponding to a given setting of free

spline parameters α, which are determined below. For any given u ∈ [0, 1], the corresponding pose

ξα(u) = (x(u), y(u), θ(u)) ∈ X is given by the following equations:

x(u) = axu
3 + bxu

2 + cxu+ dx (3.12)

y(u) = ayu
3 + byu

2 + cyu+ dy (3.13)

tan θ(u) =
∂y(u)

∂x(u)
=

3axu
2 + 2bxu+ cx

3ayu2 + 2byu+ cy
. (3.14)
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Algorithm 2: BO Path Planner
Input:

S: spline coefficients search space
nξ: total number of paths
(x0, y0, θ0): starting pose
(xf , yf ): goal location

1 for i ∈ {1, . . . , nξ} do
2 αi = argmax

α∈S
R[ξα]

3 Zi ← Sample along ξαi
4 Di = Di−1 ∪ Zi

Result: µw, σ2w

Since the starting pose at u = 0 and the final position of the robot at u = 1 are fixed, only (ax, ay, cx)

remain as free spline parameters, with the others given by:

dx = x0 (3.15)

dy = y0 (3.16)

cy = cx tan θ0 (3.17)

bx = xf − x0 − cx − ax (3.18)

by = yf − y0 − cx tan θ0 − ay , (3.19)

and thus α = (ax, ay, cx).

The algorithm

With the above path parameterisation, Algorithm 2 outlines the proposed BO path planner. At each

iteration, the algorithm starts in line 2 by choosing spline parameters αi whose corresponding path

ξαi maximises the acquisition function R[ξαi ]. Any global optimisation algorithm can be applied to

maximise R[ξα] as a function of the spline parameters α given a compact search space S. Then,

the robot executes the path (line 3), collecting a set of observations Zi = {(ξαi(tj), zj)}
n
i=1, where

zj = w(ξαi(tj)) + νj and νj ∼ N(0, σ2ν), and updates the GP, appending the new samples to its

observations dataset D in line 4. After running a total of nξ paths, the algorithm finishes, providing a

model for the power required to traverse the terrain via the GP posterior mean µw and variance σ2w.
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Feasibility constraints

To avoid infeasible paths, path selection was constrained. The constraint functions check if the candidate

path stays within the area specified for the experiment and if the path’s maximum curvature does not

exceed a specific limit. To constrain candidate paths to a pre-specified area A, a constraint functional

was set as:

C[ξ] =
n∑
i=1

cv(1− 1A(ξ(ui))) , (3.20)

where {ui}ni=1 ⊂ [0, 1] are uniformly spaced and cv is a constant cost factor for going outside of the

experiments area. Curvature is computed as the inverse of the radius of curvature. Given two consecutive

poses (xi, yi, θi) and (xj , yj , θj) along a path, the curvature at pose i looking ahead to pose j is computed

as:

κi =
2

ρij
sin

(
θj − θi

2

)
, (3.21)

where ρij denotes the planar Euclidean distance between (xi, yi) and (xj , yj). Maximum curvature

limits were set accordingly for each experiment.

The constraints above are checked for each setting of spline parameters evaluated during the acquisition

function optimisation in Algorithm 2 using algorithms that support non-linear inequality constraints,

such as the augmented Lagrangian method in Johnson (2014).

3.5 Experiments

This section presents experiments to assess how accurate the GP power-consumption model can be and

how energy-efficient the paths found by the proposed BO algorithm are. Simulations evaluated the

accuracy of the GP model estimates, assessed the effects of the UCB parameter λ on the BO planner and

compared BO to other optimisation algorithms in the task of finding energy-efficient paths. After that,

tests with a physical robot were performed to verify the BO planner in a real environment.

3.5.1 Simulation

This section presents the simulation model, followed by GP accuracy results and tests of the BO path-

planning algorithm.
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Simulation setup

Terrains were modelled as continuous height maps generated by means of Perlin noise (Perlin, 1985).

The following equation computes synthetic ground-truth values for the robot’s power consumption:

w(x) =

(fc +mrg sin s(x))v, s(x) ≥ 0,

fc(1 + sin s(x))v, s(x) < 0
(3.22)

where mr corresponds to the robot’s mass, g is the gravity acceleration magnitude, s(x) is the local

terrain slope angle, and fc is a constant factor to simulate the effect of forces independent of the ro-

bot’s pose on the terrain. Overall, this formulation simulates large efforts when the robot is moving

uphill, having to overcome its own weight, and lower, but non-negative, efforts when it is moving down-

hill. Zero-mean Gaussian noise with standard deviation σν was added to the power-consumption values

provided as observations to the GP. Table 3.1 presents the settings used for the tests.

fc mr g v σν
200 N 100 kg 10 m/s2 1 m/s 20 W

TABLE 3.1: Simulation settings

GP model accuracy

The first tests evaluated the quality of the GP power-consumption model predictions using two types

of training sets. Figure 3.2a shows the first type, where sample poses are uniformly spaced 5 metres

apart on an (x, y)-grid pattern and have orientation angles θ ∈ {−135o, −45o, 45o, 135o}, yielding a

total of 400 samples in the 50-by-50 metres terrain. Figure 3.2b shows the second type of training set,

containing random-walk samples with consecutive poses separated by 5 metres and with turns sampled

from a uniform distribution limited between -30o and 30o. This set also contains the same amount of

poses as the previous one, 400 in total. In both cases, the GP was queried with a test-set at a higher

spatial resolution, with points spaced by 1 m over a grid, and at the same angular resolution of the first

case, but with an offset, such that θ ∈ {−90o, 0o, 90o, 180o} for the queries. In total, the query set

contains 10,000 query poses. The accuracy in the predictions was evaluated by computing the relative

error between the predicted and the ground-truth values for each query pose. The root mean square

(RMS) value of the relative error for the case in Figure 3.2a was 14.5%, and for the case in Figure 3.2b,

it was 17.2%. In both cases, the same GP hyper-parameter setting was used. Since the difference in

the error levels between the ideal lawn-mower path of Figure 3.2a and the completely random path in
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(A) Uniformly-spaced poses
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(B) Random path

FIGURE 3.2: Example sets of sample poses used in tests with the GP model: on the
left, a uniformly-spaced set, corresponding to a sweep pattern over the simulated terrain
in 4 orientations; on the right, a random path where consecutive poses are separated
from each other by a fixed-length segment and a random turn angle.

Figure 3.2b is relatively small (2.7%), the GP power-consumption model provides enough generalisation

capabilities and is suitable for integration into the BO framework.

Impact of λ on the path planner

The algorithm’s exploration-exploitation trade-off is controlled by the parameter λ of the acquisition

function (see Equation 3.11). Too much exploration may lead to excessive energy expenditure, while too

much exploitation may get the algorithm stuck at local minima, missing the most energy-efficient paths.

Therefore, the BO path-planning algorithm was tested under different settings for λ across multiple

simulated terrains.

Figure 3.3 presents a few test cases with the robot travelling between two diagonally-opposed locations

over the terrain. The shortest path for this case is a straight line. However, this path goes through a

valley, requiring a high amount of power draw for the robot to climb uphill in the area close to the goal.

Consequently, in this scenario, the lowest-energy paths should not follow a straight line, but instead go

around the valley to reach the goal location. The BO method should then be able to select paths to collect

samples for the GP around that area, yielding better estimates for low energy-consumption paths. For

comparisons, the optimal spline path was computed using simulated annealing on the noise-free cost

function.
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(B) λ = 5
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(C) λ = 10

FIGURE 3.3: Height map of the simulated terrain with executed paths for different
settings of the UCB parameter λ (see Equation 3.11): Each candidate path is plotted
with a dashed line, with the lowest-energy path found by the BO algorithm represented
by a solid black line in each case. The optimum path, found by simulated annealing
over the noise-free cost function, is also plotted in a solid white line. The robot’s start
location (x0, y0) = (40, 40) is marked with a white cross (+) symbol. In all the cases,
the robot’s initial heading is θ0 = −135o, i.e. the robot is headed downwards along the
diagonal. The goal point is also fixed, located at (xf , yf ) = (10, 10).

In all the test cases in Figure 3.3, the algorithm was run for 10 iterations. For lower values of λ, the plan-

ner performs more exploitation than exploration. Consequently, the paths are usually very concentrated

around a local low-energy region. These paths can also vary a lot among different runs of the test, de-

pending on which low-energy path the algorithm finds first. However, for high values of λ the algorithm

explores using longer paths, which can accumulate higher variance in the energy predictions. After 10

iterations, the estimates and the noise-free values for the lowest-energy paths found by the algorithm in

each setting in Figure 3.3 are shown in Table 3.2. Among these test cases, the setting with λ = 5 found

the best path in terms of energy consumption. Due to noise and significant differences in height along

the paths, the estimated energy value was noticed to be slightly lower than its true value. However, for

the case with λ = 5, the algorithm was still able to find a path close to the true optimum in terms of

energy requirements, which requires 12396 J.

λ 0 5 10
E[ξ∗] 14038 J 12663 J 16052.8 J
µE [ξ∗] 13437 J 12313 J 14584 J
σE [ξ∗] 41 J 56 J 78 J

TABLE 3.2: True energy and its estimates for the lowest-energy paths found by the BO
path planner in the test cases in Figure 3.3
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FIGURE 3.4: Evolution of the GP estimates for the robot’s power consumption on
poses with θ = −135o, main direction of movement, after iterations 1, 5 and 9 for
the test case in Figure 3.3b. The upper plots show the GP predictive mean for the power
consumption level, µw(x). The middle plots show the GP predictive variance (in terms
of standard deviation, i.e. σw(x)). The lower plots show the relative error between the
GP predictive mean and the computed ground-truth costs, i.e. |1− µw(x)/w(x)|.

Though choosing a proper value for λ can be a trial and error process, in practice, a few points can be

considered. For example, setting λ = 2 allows the algorithm to consider that a candidate path ξ could

require an amount of energy in between µE [ξ] ± 2σE [ξ] to be executed. This would correspond to a

95% confidence interval, if the GP model’s hyper-parameters are properly set and the terrain slopes are

not too steep for the approximation in the energy integration to hold (Section 3.4.2). On the other hand,

if these assumptions are not valid, the true energy value can be quite far from the estimate, then a higher

λ could allow the algorithm to perform better.

Figure 3.4 presents how the GP estimates evolve with the number of iterations in the paths for the above

test case with λ = 5 (Figure 3.3b). As it can be seen in the error plots, the mean gradually converges

to the ground-truth distribution in the area where the terrain is being explored. At the same time, the
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uncertainty about the estimations also reduces in the explored area. These results and the differences

in paths seen for each setting in Figure 3.3 demonstrate that the proposed BO algorithm is effectively

exploring the terrain to learn a power-consumption model and select paths based on their reward, which

involves both cost and information gathered.

Comparisons

In the task of finding energy-efficient spline paths, the BO path planner was compared against the fol-

lowing non-linear optimisation algorithms:

• Improved Stochastic Ranking Evolution Strategy (ISRES) (Runarsson and Yao, 2005): a global

optimisation algorithm; and

• Constrained Optimization by Linear Approximations (COBYLA) (Powell, 1998): a local opti-

misation algorithm.
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FIGURE 3.5: Averaged relative energy cost (%) between the current lowest-energy path
found by each algorithm and the ground-truth optimum at each iteration. The error bars
correspond to one standard deviation, computed over the re-runs of each algorithm.
With only 5 iterations, the best paths found by the proposed BO planner are within 10%
of the optimum. For these comparisons, λ = 7 was used (see Equation 3.11).

Publicly-available implementations of these algorithms, provided by the package NLopt (Johnson, 2014),

were employed for the experiments. These algorithms directly support non-linear inequality constraints,

which were used to constrain the curvature of the paths and to limit them to the experimental area. The

algorithms were set to optimise spline parameters based only on the total energy spent for executing

each path. Since both ISRES and COBYLA would have no prior information about the objective, the

initial solution for the set of spline parameters was set to α0 = (0, 0, 0), which corresponds to a straight

line from start to goal. Simulated annealing was used in these tests to find the true optimum spline path

directly over the noise-free cost function for comparisons.
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FIGURE 3.6: Examples of the lowest-energy paths found by each algorithm on the
different terrains.

The performance of each method was evaluated on different terrains where the optimal spline path

between the start and goal locations was non-trivial, i.e. not close to a straight line. This way, one may

verify if the non-linear optimisation methods under comparison (COBYLA and ISRES) would be able to

find paths close to the global optimum without the help of a GP model. Each method was configured to

run for 20 iterations. The tests were repeated 10 times to ensure the consistency of the results. Figure 3.5

presents the performance of each algorithm in finding low-energy paths on 3 different terrain models.

On average, the pure energy-based optimisation with COBYLA and ISRES seems to get stuck at a local

minimum and, on average, is not able to find a better path within 20 iterations. On the other hand, since

the BO planner builds a model of the terrain as it explores paths, it was able to find paths closer to the

true optimum. Figure 3.6 presents some of the best paths found by each algorithm on each of those

terrains.

3.5.2 Experiments with a physical robot

This section presents results obtained in experiments with a physical robot. A small four-wheeled skid-

steer robot, shown in Figure 3.7a, was used as a test platform. The robot is equipped with an on-board

computer running ROS2. To measure power consumption, the robot carries sensors measuring battery

voltage and total current drain. For localisation, wheel odometry, IMU and GPS data are fused using an

extended Kalman filter (EKF) providing full 6D pose estimates.

The experiments were performed on an open grass field in an urban park, shown in Figure 3.8a. For the

start poses, the robot was positioned so that it was facing the north-east direction from within the area in

the lower-left corner of the image. The goal position was located in the upper-right corner of the image

2Robot Operating System: http://www.ros.org

http://www.ros.org
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at a distance of roughly 60 metres from the starting position. This region had a small hill, partly seen in

Figure 3.7b, between the robot’s starting and end positions, so that paths going over the hill and paths

going around it require different amounts of energy expenditure. The BO path-planning algorithm was

run for 12 iterations with the robot moving at a constant 0.7 m/s linear speed and at a maximum of 0.25

rad/s angular speed. The acquisition function was set with λ = 5. Power-consumption measurements

were collected at a rate of 2 Hz, with totals varying around 150 observations per path.

For this experiment, GP hyper-parameters, which include noise and signal variance, length-scales and

the mean function’s constant value, were learnt via maximum likelihood estimation using data from pre-

vious test runs and kept fixed during the BO process. Table 3.3 presents the hyper-parameter estimates.

Although the noise level σν in the power-consumption measurements is relatively large when compared

to the signal level σf , the signal component is still twice as large allowing for meaningful estimates

and planning. The length-scales reveal that terrain should allow for enough variation in power demands

for paths stretching over tens of metres. The mean function parameter ms indicates the average power

consumption for the robot.

ms lx ly lθ σf σν
22.7 W 1.8 m 1.8 m 0.46 rad 2.9 W 1.4 W

TABLE 3.3: Field experiment hyper-parameters

Figure 3.8c shows the predictions of the GP model and the actual measured energy consumption for

each path planned by BO, which are shown in Figure 3.8b. The measurement of energy consumption for

an executed path was made by directly integrating the instantaneous power-consumption measurements

given by the robot’s power sensors over time. As the plot in Figure 3.8c shows, initially the energy

requirement for the selected path is highly over-estimated, even though this first path goes over the hill

in Figure 3.7b. The initial estimate comes from simply integrating the GP prior mean function m over

the path, since the GP has no observations yet. Consequently, an overestimate for the energy in this

case means that the average power consumption given by the mean function was too high. However, as

the GP model is updated, the plot shows that the predictions gradually approximate the actual energy-

consumption values, indicating that the model is improving over time, as seen previously in simulation.

In addition, despite not much improvement due to the relatively simple terrain, towards the end, the

paths’ energy consumption are lower, demonstrating that the algorithm is able to find energy-efficient

paths in the real-world scenario. This shows that the proposed method can adapt to multiple sources of

noise and uncertainty in the physical world.
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(A) Robot (B) Experiments area

FIGURE 3.7: Robot used and partial view of the area where the field experiments were performed

3.6 Summary

This chapter presented a Bayesian optimisation method to actively learn a model capable of predicting

energy costs for paths between a start and a goal location in off-road terrains. The method does not

require information about the terrain’s characteristics, requiring only access to the robot’s localisation

and power-consumption measurements as it executes a path. As the model is built, the method is able to

find energy-efficient paths, using a utility function designed to balance the trade-off between exploration

and exploitation. The method differs from previous BO approaches by considering an objective that can

be expressed as an integral over a point-wise GP cost model between two fixed locations, instead of

using a GP to model the integrated cost directly. In this case, both paths and the point-wise GP model

are optimised simultaneously as the algorithm runs.

In simulation, results demonstrated the performance of the method in building an accurate model of the

robot’s power-consumption over the terrain. Then, in comparison with other non-linear optimisation

algorithms, results showcase its ability to find low-energy paths close to the global optimum within a

given family of parametric curves.

A path-planning experiment with a physical robot demonstrated the applicability of the proposed method

to real-world environments, where a lot of the terrain and the vehicle’s effects on power consumption

are hard to model. Having a framework that does not depend on predefined models of these processes
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FIGURE 3.8: Experimental results: (a) Aerial view of the experiments area overlaid
with the paths executed by the robot running the BO planner. (b) Paths planned by
the algorithm, where the start positions are located on the left side of the plot, while
the goal is on the right. (c) Predictions and measurements for the energy required to
execute each path attempted by the algorithm in the field experiments.

offers a great advantage in designing energy-efficient navigation systems. Therefore, the contributions

in this chapter can provide effective adaptive methods for a variety of outdoor applications where energy

consumption is a major concern.

As future work, the framework presented in this chapter can be adapted to include other variables not

considered by the proposed power-consumption model, such as velocities. Other avenues include more

complex path parameterisations and the integration of other constraints, such as obstacle avoidance,

during planning. The method can also contribute to functional optimisation (Vien and Toussaint, 2018).



CHAPTER 4

Model-free optimisation of control policies

4.1 Introduction

The last chapter presented a problem involving optimisation in function space, a space of trajectories in

that case. The planner had access to a Gaussian process model that allowed forward simulating the cost

of trajectories and a parameterised search space which was only three-dimensional. In other instantia-

tions of functional optimisation, however, there may be no pre-defined model available nor an efficient

approach to learn one, and the parameter space can be very high-dimensional. In robotics, examples

include tasks such as ball-throwing, where one could learn a model (Kupcsik et al., 2013), trying to hit

a target on a wall with a dart, where learning a model may not be possible (Kober et al., 2010), etc.

(see Mahmood et al., 2018, for additional examples). In other cases, individual costs or rewards might

be quantifiable for each action, but a global approach, considering a whole episode of execution, could

yield better results, such as in autonomous racing (Rizano et al., 2013). These problems lead to a need

for policy-search methods that can deal with sparse rewards and high-dimensional parameter spaces.

This chapter addresses the problem of optimising functions of many parameters, under a limited eval-

uation budget, considering an application to policy search (Deisenroth, 2013). In these problems, the

number of policy evaluations is limited due to the need to interact with a physical system or expensive

physics simulations. Bayesian optimisation has shown promising results in policy-search problems in-

volving expensive policy evaluations (Martinez-Cantin et al., 2007; Wilson et al., 2014), however, it still

suffers with high dimensionality, where high for BO can be anything greater than 10 dimensions (Wang

et al., 2013). Although methods which apply BO in high-dimensional search spaces have been proposed

(Wang et al., 2013; Kandasamy et al., 2015; Li et al., 2016; Rolland et al., 2018), how to do so without

making restrictive assumptions about the objective function remains an open question.

65
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FIGURE 4.1: Restriction of the valid search space under track constraints: The plot on
the left presents trajectory roll-outs for a robot car, starting at location (0, 0), for a range
of acceleration and steering angle values. The track is 3 metres long and 4 metres wide
and is represented by the shaded area in the left-side plot. The robot’s reward is either
zero if it does not complete the track or its final speed, case it completes the track. The
resulting reward surface is shown on the right-hand side.

The contribution in this chapter 1 is a method that applies Bayesian optimisation to optimise control

policies with high-dimensional parameter spaces. The method is applied to the problem of minimising

the lap time of a robot race car around a given track. No prior information about the track nor the

robot’s dynamical model is given, just an initial sub-optimal driving example. We formulate policies as

functions in a reproducing kernel Hilbert space (RKHS) (Schölkopf and Smola, 2002) and parameterise

them using finite-dimensional feature maps.

The method proposed in this chapter tackles the issues that arise in high-dimensional BO from the

search perspective, while still using all available information to build a model of the objective function.

Planning problems in scenarios like racing are heavily constrained by the environment, such as the

track and the dynamical limits of the car. As a consequence, the mass of the reward function tends

to be highly concentrated within a particular region of the search space, as most of it is composed

of invalid examples. An illustrative example is shown in Figure 4.1. Therefore, the main argument

for the methodology proposed in this chapter is that, by applying a relatively simple method, such as

randomised coordinate descent (Nesterov, 2012), and starting the search from a valid initial solution, one

can optimise over a high-dimensional GP prior efficiently. Coordinate descent relies on decomposing a

high-dimensional problem into simpler, lower-dimensional sub-problems, which are solved more easily.

Valid initial solutions for each BO iteration can be determined from the previous observations, such as

1The work in this chapter has been previously presented at the 2018 IEEE International Conference on Robotics and
Automation (ICRA) as Oliveira et al. (2018b)
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the current policy with the highest reward. Experiments empirically demonstrate that this simple search

strategy can be effective when combined with BO in the particular class of problems addressed here.

The remainder of this chapter is organised as follows. The next section reviews related work in the areas

of Bayesian optimisation, reinforcement learning and autonomous racing. Section 4.3 follows with a

formal presentation of the optimisation problem approached by this chapter and some background infor-

mation about BO. Then, in Section 4.4, the proposed BO method is presented. Section 4.5 reports the

results of experimental evaluations using a race car simulator, comparing the proposed method against

other optimisation algorithms. Finally, a summary and some directions for future work are provided in

Section 4.6.

4.2 Related work

This section reviews relevant prior work contrasting them to the purposes of the contribution in this

chapter. Firstly, a presentation of how the racing problem has been previously approached illustrates

some of the issues to be addressed. Then the relation to reinforcement learning is discussed. Lastly, the

section reviews Bayesian optimisation approaches to policy search and other high-dimensional search

problems.

4.2.1 Autonomous racing

The problem of finding a control policy that will allow a robot racer to finish a given track in minimal

time has been approached in many ways. Model predictive control (MPC) techniques have been applied

to locally optimise driving policies over receding-horizons based on external sensor data and internal

dynamical models, which are either pre-designed (Liniger et al., 2015) or learnt (Williams et al., 2017).

From a global optimisation perspective, the same problem has been approached as racing line optimisa-

tion (Rizano et al., 2013), i.e. finding the path within the track that will allow the car to finish the race in

minimal time, given a map of the race track and a kinematic model of the vehicle. When global infor-

mation about the racing environment is available through external images, deep reinforcement learning

architectures have also been applied to fine-tune control policies (Sallab et al., 2017). Lastly, this prob-

lem has also been approached by using evolutionary algorithms to optimise parameters for policies that

either combine different pre-designed heuristics (Butz and Lonneker, 2009), or directly map the state of
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the car and the opponents to control actions via a gene regulatory network (Sanchez and Cussat-Blanc,

2014).

4.2.2 Reinforcement learning

Learning a control policy that maximises a reward that depends on the combined effect of its actions can

also be approached as policy search in reinforcement learning (RL) (Deisenroth, 2013). Both model-

based and model-free techniques have been proposed in the literature. In Kupcsik et al. (2013), for

example, a framework is proposed to allow for algorithms that learn policies using an internal, also

learned, GP-based forward model of the robot to simulate trajectory roll-outs in an internal optimisation

step before each episode of policy execution. Neural-network learning models have also been applied to

policy search, including applications to autonomous racing (Williams et al., 2017), in a receding horizon

setting. Model-based techniques encode prior assumptions about the physical system where the policy

runs. Such assumptions limit the applicability of the technique and require prior knowledge about the

system, at least at a high level, which is not always available. In terms of model-free approaches, in

Kober et al. (2010) a robot learns how to throw a dart to hit a target with an algorithm that learns a model

of the optimal policy-parameters distribution. They apply a Gaussian process prior over the space of

contexts for each single parameter and employ no model of the robot itself. Model-free approaches have

also been successfully applied to a number of other robotics tasks, reaching, speed driving and position

control (Mahmood et al., 2018). In contrast, the method this chapter proposes directly learns a GP model

of the reward function over a policy parameters and performs BO to optimise them.

4.2.3 Bayesian optimisation approaches

Bayesian optimisation has been previously applied to policy-search problems with some success. How-

ever, the applications usually had parameter spaces whose dimensionality was low enough. The follow-

ing reviews a few of these cases and discusses current BO approaches to high-dimensional problems.

BO for policy search

Bayesian optimisation has also been applied to problems involving policy search. A similar approach to

the one in this chapter is presented in Martinez-Cantin et al. (2007), where the authors model cost as a

direct function of policy parameters. In that paper, the robot’s task was to reduce uncertainty about its

location and its surroundings, and the policies were parameterised by a small number of variables. Since
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the policy-execution outcome/reward is usually more-closely a function of the resulting behaviour of the

robot than of the policy parameters themselves, another approach to this problem is to apply a GP prior

over this mapping from behaviours to rewards (Wilson et al., 2014), while still doing BO over the policy-

parameters space. That approach, however, requires that enough information can be observed from the

system. More recently, other BO approaches to direct policy search have been proposed (Martinez-

Cantin, 2017; Chatzilygeroudis et al., 2017), dealing with different aspects of the policy-search problem,

which involve low-dimensional parameter spaces. Our aim in this chapter is to learn policies that can

have enough representation power, while requiring the least amount of information from the system.

High representation power generally implies high-dimensional parameter spaces, which can be an issue

for traditional BO methods.

BO in high-dimensional problems

One common issue with the presented applications of BO is the curse of dimensionality. The great

majority of BO algorithms use GPs to learn and model the objective function. One of the core issues

is that GP modelling does not scale well with high dimensions and/or large amounts of data, degrading

the performance of BO in such settings. Several approaches have been recently developed to tackle the

scaling of GP/BO to high dimensions. One could, for example, assume that the objective function only

depends on a small subset of input coordinates and do variable selection to find these (Chen et al., 2012).

Ulmasov et al. (2016), for instance, applies principal component analysis (Murphy, 2012) to determine

a probability distribution over possible subsets of variables and keeps a GP model over each possible

decomposition, one of which should prevail as the most sampled at the end of the process.

Another approach is to assume there are lower-dimensional linear embeddings containing most of the

variation of the function. On the one hand, a single linear embedding might include the optimum of the

objective function in a dimensionality reduction approach (Wang et al., 2013; Djolonga et al., 2013).

On the other hand, one could assume that the objective function is additively composed of several low-

dimensional functions either disjoint (Kandasamy et al., 2015; Li et al., 2016) or inter-dependent (Rol-

land et al., 2018).

Modelling the objective function as a sum of unidimensional components relates to the work in this

chapter. However, the proposed method does not require such assumption to be true and places a full

GP prior on the objective function, instead of modelling each component individually as Kandasamy

et al. (2015). Determining the correlations between each dimension, as in Rolland et al. (2018), is also
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not a concern, but simply making the search for candidates more efficient by applying a randomised

coordinate-wise optimisation scheme.

4.3 Preliminaries

This section provides a formal description of the problem setup, followed by the formulation of a class

of parameterised policies.

4.3.1 Problem statement

Let X denote the set of positions along a race track, and let U denote an action space. Both X and U

are continuous spaces. Consider policies mapping the position x ∈ X of the robot along the track to a

corresponding control action u ∈ U . The goal is to find the control policy π : X → U that minimises the

time τ taken to complete the track under constraints imposed by the track itself and the robot dynamics.

The reward R is defined as:

R =

`/τ , if track completed

0 , if failed to complete the track
(4.1)

where ` is the length of the track. Therefore, for success cases, the reward is equivalent to the average

linear speed of the robot. In this sense, minimising τ is equivalent to maximising R. Given a class of

policiesH, we search for:

π∗ = argmax
π∈H

R[π] . (4.2)

We seek a method that solves the above problem for any kind of mobile robot and without needing a map

of the track. Therefore, model-based solutions are inapplicable, for they would have to learn an approx-

imate transition model of the robot, whose representation varies among different driving mechanisms,

and use this model to simulate trajectories over the track map.

4.3.2 Policy parameterisation

The optimal policy π∗ is assumed to belong to a reproducing kernel Hilbert space H (Section 2.4).

RKHS-based methods has been relatively successful in modelling trajectories for motion planning (Mar-

inho et al., 2016) and components of stochastic control policies for reinforcement learning (Bagnell and
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Schneider, 2003; Vien et al., 2016). The RKHS formulation allows the policy to assume a variety of

shapes, depending on the choice of kernel function. Prior knowledge about optimal policy characteris-

tics, such as the degree of smoothness, can be encoded in the class via the kernel so that every policy in

the class presents them.

Considering a one-dimensional action space U ⊂ R, evaluating a policy π ∈ H at a point x ∈ X is

equivalent to an inner product:

π(x) = 〈π, k(·, x)〉H , (4.3)

where k : X × X → R is the reproducing kernel of H. In a RKHS, kernels are equivalent to inner

products between feature maps φ : X → H in the corresponding Hilbert space, such that k(x, x′) =

〈φ(x), φ(x′)〉H and π(x) = 〈π, φ(x)〉H. The features φ(x) are usually infinite-dimensional vectors,

making the direct optimisation of π ∈ H computationally intractable. However, several techniques in

the kernel machines literature (Rahimi and Recht, 2007; Le et al., 2013; Avron et al., 2016) propose

approximating φ(x) by a finite-dimensional vector φ̂(x) ∈ Rq, q < ∞, such that, for any x, x′ ∈ X ,

k(x, x′) ≈ φ̂(x)Tφ̂(x′). As a consequence, we have that:

π(x) ≈ πw(x) = wTφ̂(x) , (4.4)

where w ∈ Rq is a vector of weights, which uniquely determines the approximate policy πw for a

given finite feature map φ̂. Therefore, we can replace the objective in Equation 4.2 by the search for an

approximate solution πw∗ with:

w∗ = argmax
w∈S

R[πw] , (4.5)

where S ⊂ Rq is a compact search space.

Relation to linear policies: The formulation in Equation 4.4 relates to linear policies with non-linear

basis functions (Deisenroth, 2013). However, by making the connection to RKHS’s allows a more

flexible problem formulation which can incorporate feature maps from a variety of kernel approximation

techniques, such as the Nyström method (Yang et al., 2012) and Fourier features (Rahimi and Recht,

2007), which are flexible enough for a variety of modelling problems (Tompkins et al., 2019).

Extension to multivariate control spaces: Although the problem has been formulated for 1-D actions

in this section, it could be easily extended to actions composed of multiple independent controls. In that

case, the resulting policy parameters would correspond to the concatenation of the weights vector for

each independent control function (Alvarez et al., 2011).
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4.4 Coordinate-descent Bayesian optimisation for policy search

This section presents a method that approaches the problem in Equation 4.5 from a Bayesian optimisa-

tion perspective. The method places a Gaussian process prior over the objective function in Equation 4.5,

i.e. R[πw] = f(w), and employs an efficient approach to search in high dimensions. The first part of

this section presents how to apply coordinate-descent methods to handle issues that arise when doing

BO in high-dimensional search spaces. The second part provides a full description of the policy-search

algorithm.

4.4.1 Acquisition function optimisation

Although using finite dimensional approximations for feature maps in the policies representation, the

dimensionality of the search space can be still quite large. A Bayesian optimisation method to to solve

Equation 4.5 then faces of optimising high-dimensional parameter vectors. Several methods have been

proposed in the BO literature to deal with high-dimensional search spaces (Wang et al., 2013; Li et al.,

2016). However, those methods usually require a few possibly strong assumptions about the objective

function. The framework proposed here instead employs a very simple method, Stochastic Coordinate

Ascent (Algorithm 3). This method utilises a random axis selection scheme to optimise the AF over each

axis individually, starting from the current best set of parameters. Such an approach biases the search

locally, avoiding excessive exploration in a high-dimensional space, and reduces the simultaneous search

over several coordinates to several single-coordinate line searches. Despite the bias, problems like racing

offer a space of valid solutions that is heavily constrained by factors such as the shape of the track and

the car’s dynamical limits. Therefore, the reward function’s mass is forced to be concentrated in a single

island within the search space, which is shared by the global optimum and all the other valid solutions.

Stochastic coordinate ascent (Algorithm 3) was inspired by coordinate descent (CD), a class of algo-

rithms that are one of the oldest in the optimisation literature (Rosenbrock, 1960). CD is based on the

idea that a n-dimensional problem can be decomposed into n one-dimensional sub-problems, which

makes it suitable for large-scale optimisation problems (Nesterov, 2012). In the CD strategy, each co-

ordinate is updated sequentially by solving the one-dimensional problem using a suitable optimisation

algorithm, while all other coordinates are kept fixed. The methods vary in the way the sequence of co-

ordinates is chosen, whether only one coordinate or a block of them is optimised at a time, and whether

derivatives are needed or not. Several works focused on characterising the convergence behaviour of



4.4 COORDINATE-DESCENT BAYESIAN OPTIMISATION FOR POLICY SEARCH 73

these algorithms (Nesterov, 1983; Bertsekas, 2015; Nesterov, 2012). Under some assumptions (e.g.

Lipschitz continuity, strong convexity) CD methods achieve linear convergence rate. The most intuitive

scheme for this technique would be to optimise the coordinates in an ordered cyclical fashion. However,

Powell (1973) showed an example of a non-convex function where this ordered sequential optimisa-

tion process cycles without convergence. To avoid this kind of issue, Algorithm 3 adopts a randomised

sequence that changes once every coordinate has been optimised.

Algorithm 3: StochasticCoordinateAscent
Input: h,w∗,D

1 w← w∗

2 I = randomShuffle({1, . . . , q})
3 for i ∈ I do
4 wi ← argmaxv∈Wi

h(w0, . . . , wi−1, v, wi+1, . . . , wq|D)

5 return w

Algorithm 3 starts the search from the current optimum location. Then it randomly shuffles the sequence

of coordinate indices {1, . . . , q} in line 2. In a loop (line 3), the algorithm follows the shuffled sequence

I to optimise one axis after the other (line 4) within its corresponding (bounded) search space Wi.

Combined with an acquisition function that avoids excessive exploration and starting the search from

the current optimum estimate, this step should ensure that the search for policies remains within a mostly

valid neighbourhood. After passing through all the coordinates, it returns the corresponding optimised

vector of weights.

Although not using derivatives, as in standard coordinate descent methods (Nesterov, 2012), in practice

the approach in Algorithm 3 is still able to achieve similar results. In the development of this framework,

preliminary tests tried other CD methods, e.g. the randomised accelerated coordinate descent method

(RACDM) (Nesterov, 2012). The preliminary results revealed that their performance is usually not as

good as the simple scheme in Algorithm 3. Reasons for that involve issues with escaping saddle points,

such as when starting from a previously-observed weights setting, and restrictions in the choice of GP

covariance function, which needs to be differentiable for the method to be applicable. For instance, the

latter is not the case for Matérn 1 (see Equation 2.21), the best performing covariance function chosen

for the experiments in Section 4.5.
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4.4.2 The policy-search algorithm

This section proposes an algorithm that improves a valid initial policy so that the robot racer can finish

the track in minimal time. The initial policy can be obtained by recording the actions of a simple

controller or a human driver. Although related to imitation learning (Sun et al., 2017), there is no need

for the initial policy to be optimal or near-optimal, only to be able to successfully complete the race

track with the car.

Recording a driving example yields an initial set of points Qs = {xi}si=1 ⊂ X and the corresponding

vector of observed actions us = [ui]
s
i=1, with ui ∈ U , ∀i. The initial weights w0 can then be determined

by minimising a regularised least-squares loss function:

w0 = argmin
w∈Rq

‖us − φ̂(Qs)w‖22 + λ‖w‖22 , (4.6)

where φ̂(Qs) = [φ̂(x1), . . . , φ̂(xs)]
T is a s-by-q matrix with the features for each xi on the corre-

sponding row and λ is a regularisation factor, to avoid extreme values for the weights. The solution to

this convex optimisation problem can be found analytically by zeroing out the gradient of the loss with

respect to w, yielding:

w0 = [φ̂(Qs)Tφ̂(Qs) + λI]−1φ̂(Qs)Tu. (4.7)

Before starting the policy search with BO, an initial training of the GP is needed to provide an estimate

of its hyper-parameters, i.e. the noise variance and the parameters of the covariance function. Due

to the vast majority of the search space being, in general, composed of invalid policies, uniform or

Latin hypercube random samples could provide too many observations with zero reward, leading to an

uninformative GP prior. To avoid this issue, a better initialisation strategy is to sample and execute a set

of s samples from a normal distribution N(w0, Iσ
2
0), with a sufficiently small σ20 . This way, the initial

observations dataset Ds = {wi, Ri}si=1 can provide a more informative prior over the reward function.

In addition, the hyper-parameters can also be re-estimated online during the BO process, as in Wang

et al. (2013).

The proposed method, coordinate-descent Bayesian optimisation (CDBO), is summarised in Algo-

rithm 4. In lines 1 through 4, it collects the initial set of observations for the GP. In lines 5 through

14, the search for the optimal policy is performed. Line 9 executes the policy parameterised by the cur-

rent weights. Lines 10 through 12 keep track of the optimum estimate. Line 13 updates the GP dataset.
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Algorithm 4: CDBO
Input: w0: weights of the initial policy

σ20: initial samples variance
s: number of initial samples
n: number of laps, n > s

1 for i ∈ {1, . . . , s} do
2 Sample wi ∼ N(w0, Iσ

2
0)

3 Ri ← Execute πwi

4 Ds = {(wi, Ri)}si=1

5 R∗ ← maxi∈{1,...,s}Ri
6 w∗ ← argmaxi∈{1,...,s}Ri
7 ws+1 ← w0

8 for t ∈ {s+ 1, . . . , n} do
9 Rt ← Execute πwt

10 if Rt > R∗ then
11 R∗ ← Rt
12 w∗ ← wt

13 Dt = Dt−1 ∪ {wt, Rt}
14 wt+1 ← StochasticCoordinateAscent(h,w∗,D)

15 return w∗, R∗

Line 14 performs the maximisation of the acquisition function to select the next vector of weights to

evaluate. The algorithm proceeds until its budget of n function evaluations is exhausted.

4.5 Experiments

This section presents the experimental evaluation of CDBO and other methods for optimisation in high

dimensions. The experiments apply policies to control a race car in simulations using the physics engine

of an open-source game, called Speed Dreams2. This game is based on TORCS, which has been a popu-

lar simulated racing environment in the research literature (Wymann et al., 2014). Figure 4.2 presents a

screen-shot of the car model used in experiments, a Spirit 300. All the tests compared the performance

of CDBO against the following methods:

• CMA-ES: Covariance Matrix Adaptation Evolution Strategy (CMA-ES) has been previously

applied to reinforcement learning problems involving policy search (Rückstieß et al., 2010).

2Speed Dreams: https://sourceforge.net/projects/speed-dreams/
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In particular, the experiments here use active CMA-ES(Arnold and Hansen, 2010), with an

implementation provided by an open-source library3.

• REMBO: Random Embeddings Bayesian Optimisation (REMBO) (Wang et al., 2013) uses

random embeddings to deal with high-dimensional BO problems via dimensionality reduction.

The comparisons involved REMBO with both 5 and 10-dimensional random embeddings.

• Standard BO: The tests apply plain BO using CMA-ES to optimise the acquisition function.

The internal optimisation along each coordinate in CDBO used COBYLA (Powell, 2007), a local

derivative-free optimisation algorithm. The implementation was provided by a popular non-linear opti-

misation library, named NLopt (Johnson, 2014).

4.5.1 Setup

The state space of the robot is represented by its position along a given race line normalised by its length,

i.e. x ∈ [0, 1], where 0 corresponds to the start line, increasing to 1 when the robot crosses the finish

line. The race line is the centre line of the track, but it could be any other valid trajectory, such as

an optimised race line (Xiong, 2010). The control policy actuates the car’s acceleration by optimising

throttle and braking, which are combined into a single scalar output u ∈ [−1, 1]. Positive values com-

mand throttle, while negative ones brake. The car steering was not controlled by the policy, but by an

external controller. Optimising only the acceleration control of the car is already a challenging problem

and sufficient to assess the capabilities of the optimisation methods in dealing with high-dimensional

problems.

Steering control was performed by a simple proportional-integral (PI) controller, which tries to minimise

the distance between the car and the racing line. In this setup, the policy-search algorithm needed to be

cautious not to set huge acceleration values for the car at critical parts of the track. Going too fast in

curves could destabilise the steering controller and violate the friction limits of the tires.

For features φ̂, the experiments utilised an array of q kernels, i.e.:

φ̂(x) = [ku(x, x̂1), . . . , ku(x, x̂q)]
T , (4.8)

where the points x̂i = i−1
q−1 , i ∈ {1, . . . , q}, form a set of q regularly-spaced locations for the basis

functions along the track. In this sense, no prior information about where the critical parts of the track

3libcmaes: https://github.com/beniz/libcmaes

https://github.com/beniz/libcmaes
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FIGURE 4.2: Screen-shot of the race car used in the experiments.

are was assumed. A possibly better design for the basis function locations would be to concentrate them

around critical portions of the track. Driving through curves, for example, requires significant changes

in acceleration. However, knowing where curves are would require a map of the track. These critical

points could also be learnt by analysing the initial recorded actions, searching for areas of high variation,

but that is left for future work.

Setting ku to be the RBF squared exponential kernel would lead to the RBF network policy parameterisa-

tion, which has already been applied to some reinforcement learning problems (Deisenroth, 2013). The

RBF kernel yields very smooth curves and would not be capable of providing fast transitions in the com-

mands profile. Therefore, all the experiments used the Matérn class of kernel functions (Equation 2.21)

for the policies. In particular, ku is set as a Matérn 3 kernel:

ku(x, x′) =

(
1 +

√
3

lu
|x− x′|

)
exp

(
−
√

3

lu
|x− x′|

)
, (4.9)

where lu is a length-scale parameter controlling the smoothness of the curve. The values for lu were set

as approximately the spacing between the basis functions, i.e. lu ≈ 1
q−1 .

Figure 4.3 demonstrates the effect that different length-scales have on the shape of the curve. The

length-scale could be numerically optimised before starting the race by minimising the approximation

error with respect to the data given by the initial policy. However, fixing the length-scale according to the

space between the kernels ensures that the gaps corresponding gaps can be filled without compromising

the flexibility of the policy, and avoids over-fitting the length-scale to the initial policy data, which can be
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FIGURE 4.3: Detail of the effect of different lengths scales on the fitting of the initial
policy for the same kernel placement. The recorded actions are shown in a dashed
line. Shorter length scales allow sharper transition, but might compromise interpolation.
Longer length scales yield smoother curves, but might compromise flexibility

very flat in some portions. Observing the figure, we also see that a non-stationary kernel could provide

better approximations by allowing varying degrees of smoothness along the curve. Despite that, models

based on flexible non-stationary kernels, such as the neural network kernel (Rasmussen and Williams,

2006, Ch. 4), usually require large amounts of data (Vasudevan et al., 2009), making them less suitable

to represent policies using a relatively small amount of basis functions.

The GP model of the reward function used the Matérn 1 kernel (Equation 2.21) as covariance function.

This kernel provides some flexibility to model sharp transitions in the reward function, such as the ones

on the borders of the valid region in Figure 4.1, where the reward suddenly drops to zero. The Matérn 1

kernel is also equivalent to the exponential covariance function, with:

kR(w,w′) = σ2f exp
(
−‖w −w′‖Λ

)
, (4.10)

where σ2f is a signal variance parameter and ‖·‖Λ is the Mahalanobis distance norm (Equation 2.57),

with Λ = diag(l−2i ), i = 1, . . . , q, as a length-scales matrix for automatic relevance determination

(ARD). The same GP hyper-parameters adaptation scheme proposed in Wang et al. (2013) was applied

to all BO methods. In the case of the GP noise model, since the simulations of the physics engine in the

game are deterministic, noise variance bounds were set very close to 0. 4

CDBO and standard BO used the upper confidence bound criterion (see Section 2.3.2) as acquisition

function. At each BO round t, candidate policy parameters w are evaluated by:

h(w|Dt−1) = µt−1(w) + βσt−1(w), (4.11)

4Small positive values (e.g. 10−3) are allowed, even in a no-noise setting, only to ensure the positive-definiteness of the
GP covariance matrix, so that it is always invertible.



4.5 EXPERIMENTS 79

(A) Forza (B) Allondaz

FIGURE 4.4: The race tracks for the experiments (Source: Speed Dreams)

where µt−1(w) is the mean of the GP posterior at w, σt−1(w) is the square root of the GP posterior vari-

ance, and β is a parameter controlling the exploration-exploitation trade-off. Performance results were

best with small constant values for β ∈ [0.5, 2] with the setting for the experimental comparisons fixed at

β = 1. Due to the high-dimensional search space, a low value for β prevents excessive exploration, im-

proving short-term performance.5 Experiments with REMBO, however, used the expected improvement

acquisition function, since the results in Wang et al. (2013) were achieved using that criterion.

The initial policy demonstration is given by a proportional-integral (PI) controller, whose only task is to

drive the car at a constant speed of 15 m/s along the track. An example of such a demonstration for one

of the test tracks is shown in Figure 4.3. The initial set of weights w0 is learnt from the policy given by

this initial controller, as in Section 4.4.2. All methods under comparison are informed with the same w0

as an initial solution.

4.5.2 Results

Experiments were run on two different tracks. Each method under comparison was given a budget

of 300 policy evaluations, each corresponding to one lap. In the case of BO and REMBO, the first

10 laps correspond to the initial samples (Section 4.4.2). Before each policy evaluation, to optimise

the acquisition function, all versions of BO were allowed a maximum of 50,000 acquisition function

evaluations, and had as starting point the best weights found up to that lap. To minimise stochastic

effects in the algorithms, each run of 300 laps was repeated 4 times, and the results were averaged.

5Similar to the previous chapter, here again the UCB parameter was kept fixed throughout the BO process because prior
knowledge about the parameters necessary to keep UCB’s theoretical guarantees (Chowdhury and Gopalan, 2017), such as
upper bounds on the RKHS norm of the objective function, was not assumed to be available.
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FIGURE 4.5: Performance vs. dimensionality on Forza: More kernels allow for better
policies, but make the optimisation problem harder. Results were averaged over 4 trials.
Shaded areas correspond to 1 standard deviation.

The first track, called Forza by the game, was a relatively simple circuit inspired by a real race track in

Monza, Italy. This track is 5,784 metres long and 11 metres wide over flat asphalted terrain. The critical

parts of this track are the sharp curves at the bottom of Figure 4.4a, which in terms of x value, happen

around 40% of the track.

Figure 4.5 presents the overall performance of the analysed methods on Forza for policies with different

numbers of kernels. The number of kernels corresponds to the number of policy parameters, since

each kernel is a basis function, having a weight to be optimised. These experimental results then allow

assessing how each method handles the increase in dimensionality, which adds flexibility to the control

policy, but makes its optimisation harder. As the plots show, although finding better solutions in the 10

kernels setting, CMA-ES’s performance severely degrades with the increase in dimensionality. When

combined with BO (in BO-CMA-ES), CMA-ES helps it to improve performance on average. Across

individual runs, however, BO-CMAE-ES’s behaviour was actually bimodal: sometimes very good, and

other times very bad. REMBO wasn’t able to achieve good results for any number of kernels in this

track. For the 100 kernel test, one of the problems with REMBO is clearly visible: if the used random

embedding is not able to capture a (or if there isn’t any) relevant subspace, the performance is poor.

Overall, it is possible to see that CDBO’s performance remains relatively stable with the increase in

dimensionality and it is able to find better solutions for this policy search problem.

Figure 4.6a presents the best policy with 50 kernels obtained by CDBO and the resulting speeds the car

achieved along the Forza track. From Figure 4.6b, it is possible to see that the algorithm adapts itself to

speed up on the straight portions of the track and reduce speed close to curves, reducing the lap time.



4.5 EXPERIMENTS 81

0 0.2 0.4 0.6 0.8 1

0

0.5

1

x

u

INITIAL π∗

(A) Control policy

0 0.2 0.4 0.6 0.8 1

0

20

40

x

S
P

E
E

D
[M

/S
]

INITIAL π∗

(B) Resulting speeds

FIGURE 4.6: Best policy obtained for track Forza

The second test track, Allondaz, shown in Figure 4.4b, is a road track with varying elevation along the

path and filled with portions of complex geometry. It is 6,356 metres long and 12 metres wide, around

the same dimensions as Forza. The overall performance of the methods is presented in Figure 4.7. In this

track no algorithm was able to achieve average speeds as high as in Forza. As increasing the number of

kernels beyond 50 did not significantly improve performance, experiments in Allondaz used 50 kernels

at most.

Similarly to the previous track, CMA-ES is not able to handle the high-dimensionality, and CDBO

still maintains a consistent performance throughout the increase in dimensionality, demonstrating the

capabilities of the method in high dimensions. Also, it’s possible to see in all the tests that CDBO can

achieve an even better result, if it is allowed to run for more iterations. REMBO achieved better results

than the previous track, but it is still outperformed by BO-CMA-ES and CDBO. One interesting detail

about REMBO’s performance is that, after some iterations it does not improve any more, which means

that it reached the optimum for the subspace used, and the global optimum is not in that subspace.

Compared to standard BO, another interesting feature of CDBO can be seen in Table 4.1, which shows

the runtime for each experiment (300 laps) on Forza. It is possible to see that with the increase in dimen-

sionality, standard BO with CMA-ES (BO-CMA-ES) significantly increases in runtime when compared

to the other methods. REMBO and CDBO maintain a low runtime through all the different problem

dimensions. In particular, for the 100-kernels case, each internal acquisition function optimisation made

by CMA-ES for BO-CMA-ES was taking seconds to complete, while the much simpler CD method
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FIGURE 4.7: Performance vs. dimensionality on Allondaz: The plots show how the
performance of each algorithm is affected by the increase in dimensionality. Results
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TABLE 4.1: Average runtime (in seconds) on Forza

Method/Dimensions 10 50 100
CDBO 127 281 318

CMA-ES 173 234 252
BO-CMA-ES 553 680 3048
REMBO-5d 154 242 257

REMBO-10d - 244 299

would do the same in fractions of a second. So, even if running standard BO using CMA-ES internally

to optimise the acquisition function leads to similar average performance when compared to CDBO,

the runtime for the standard BO method is about 10 times longer for the 100-dimensional case, which

highlights the efficiency of CDBO for high-dimensional problems.

4.6 Summary

This chapter presented a method to perform Bayesian optimisation in high-dimensional search spaces.

The proposed method was applied to optimise control policies to allow a robot to complete a given race

track faster. This problem is an instantiation of a more general class of problems involving delayed

rewards and costly policy evaluations. The proposed coordinate-descent Bayesian optimisation method

guides the exploration of the parameter space towards the optimal policy. By making use of ideas from

randomised coordinate descent methods, optimising a function one dimension at a time in a randomised

sequence, and by starting the search from a valid, though sub-optimal, initial solution, CDBO is able to

be effective in the high-dimensional acquisition function optimisation sub-problem. Experiments with a
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car racing simulator demonstrated that this relatively simple approach is able to outperform other state-

of-the-art black-box optimisation and BO methods in complex scenarios, sometimes at a fraction of the

runtime.

As future work, the modelling approach can be improved to deal with policies over higher-dimensional

state and action spaces and to work together with other conventional motion planning algorithms. Adap-

tive sampling schemes for coordinate-wise optimisation (Namkoong et al., 2017), which go beyond the

uniform coordinate sampling approach taken in this chapter, can also be investigated. Lastly, the game

physics engine does not simulate different sources of randomness in the dynamics of a real environment,

which could affect the performance of control policies. Therefore, robustness to uncertainty in control

and localisation is a desirable goal to be incorporated into the policy optimisation. The next chapter

presents a step towards that direction.



CHAPTER 5

Smooth navigation under localisation uncertainty

5.1 Introduction

Mobile robots have been successful in many field applications, such as mining (Maekawa et al., 2010;

Brown, 2012), planetary exploration (Lang et al., 2007; Carsten et al., 2007), agriculture (Underwood

et al., 2017), and environmental monitoring (Marchant and Ramos, 2012), to name a few. In all these

applications, robots face environments with physical characteristics that are a priori unknown and can

heavily affect performance. In the case of ground robots, terrain roughness can affect the ability of a

robot to navigate and even cause damage to its on-board hardware due to excessive vibration (Souza

et al., 2014). To aid in these problems, methods to enable the robot to automatically learn terrain prop-

erties from its sensory data have been proposed in the literature (Lang et al., 2007; Souza et al., 2014).

However, such methods usually assume that localisation is accurate enough, without dealing with its

inherent uncertainty.

Uncertainty in localisation can mislead learning algorithms with noise-corrupted estimates of the loca-

tion where measurements are taken. Robot navigation heavily depends on knowing where the robot is

with respect to a given reference path and its surroundings. As a result, localisation inaccuracies can

lead a robot into areas that are unsafe for navigation. In the case of rough terrain modelling (Souza et al.,

2014), for instance, the robot might be led into areas of excessively high roughness.

This chapter presents a method that allows a robot to actively learn terrain traversability (Martin et al.,

2013) models from proprioceptive data while keeping itself safe by considering both model and locali-

sation uncertainty. The particular contributions1 are the following:

1The contributions in this chapter have been previously presented at the 18th International Symposium on Robotics Re-
search as Oliveira et al. (2017b). At the time of this thesis writing, the final proceedings of the event are still being edited by
Springer, the publisher, but a preprint of the paper is available as Oliveira et al. (2017a).

84
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• a framework to account for input uncertainty in Bayesian optimisation for mission planning;

and

• an adaptation of the DUCB acquisition function (Section 2.3.2) to the context of exploration

under uncertain localisation.

The proposed method applies the expected Gaussian process model, discussed in Section 2.2.4, as a

prior for the BO framework. This kind of GP model allows BO to take into account noise in both

the execution of a query and in the location estimates in the observations dataset. As an application,

experiments evaluate the proposed method in the task of learning a model of terrain roughness from

experienced vibration data (Souza et al., 2014).

The remainder of this chapter is organised as follows. The next section reviews relevant prior work in the

areas of terrain modelling and Bayesian optimisation. Section 5.3 presents the proposed methodology

for Bayesian optimisation under localisation uncertainty. Results for experiments in simulation and with

a physical robot are presented in Section 5.4. Finally, Section 5.5 concludes the chapter and proposes a

few directions for future work.

5.2 Related Work

Traversability metrics estimate how hard it is for a vehicle to traverse a certain terrain. In robotics, terrain

traversability is usually estimated from exteroceptive sensor data, such as LIDAR range measurements

(Nordin, 2012) and stereo vision information (Ho et al., 2013). Among the different kinds of metrics,

terrain roughness can play an important role in planning how a robot should navigate on the terrain.

Methods to learn terrain roughness using image data usually rely on learning image classification mod-

els (Komma et al., 2009), which generally do not provide a measure of how uncertain they are about

their estimates and are computationally intensive. Martin et al. (2013), however, propose using vehicle

experience data to learn a Gaussian process regression model to predict terrain traversability with un-

certainty estimates. Though restrictive when compared to exteroceptive sensing information (Ho et al.,

2013), proprioceptive sensing can still be a very viable option for traversability estimation. For instance,

many robot platforms are not equipped with stereo vision or 3D LIDAR sensors, or do not possess the

computational resources to process this kind of information on-board online.
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Souza et al. (2014) presented a method to learn a GP model for terrain roughness from vehicle expe-

rience. The authors applied Bayesian optimisation in an active perception approach to reduce experi-

enced vibration during navigation while learning the model from acceleration measurements. In the BO

framework, the terrain roughness model is learnt online as the algorithm drives the robot around select-

ing locations to visit by balancing a trade-off between exploration and exploitation (Brochu et al., 2010;

Souza et al., 2014). Nevertheless, BO usually considers deterministic query locations within its search

space, as BO is typically used in problems where a given set of parameters have to be optimised (Snoek

et al., 2012; Wilson et al., 2014).

Nogueira et al. (2016) presented a method to apply BO to problems where the execution of a query

is noisy, such as robotic grasping, and one seeks a solution that is robust under repeatable trials. The

authors propose querying BO’s surrogate model using a Gaussian distribution by applying the unscented

transform (Wan and van der Merwe, 2000). In this, even with uncertainty in execution, the algorithm

chooses grasp configurations that are both optimal and robust to execution noise. Despite that, Nogueira

et al. (2016) still apply a conventional GP model as a prior for BO. In navigation problems, the robot is

usually able to obtain a probability distribution estimating its location, which is given by a localisation

system. Making use of a GP model that takes into account such distributions as inputs should then allow

BO to learn a better model of the true underlying objective function.

To deal with uncertain location estimates in observations, besides the usual noisy outputs, BO needs a

statistical model that also considers partial observations of the query inputs. In BO the most common

approach to modelling the objective function is using Gaussian process regression (Section 2.2). In

the case of observations at uncertain inputs, Girard (2004) proposed methods to propagate input uncer-

tainty through a GP model, developing analytical approximations to compute covariance function values

between inputs represented by Gaussian distributions. Another approach is to assume that location es-

timates are corrupted by i.i.d. Gaussian noise, similar to usual assumptions on output observations in

standard GP regression. That is the approach taken by Mchutchon and Rasmussen (2011) with a method

that linearises the effect of input noise on the output of the model via a first-order Taylor expansion. A

final possible approach is to use GP latent variable models (Titsias and Lawrence, 2010) to consider the

true unknown inputs of the GP model as latent variables. Damianou et al. (2016) proposed a variational

inference framework to compute the posterior of the GP model under a set of assumptions about the

input distributions. None of the mentioned GP methods, however, has been previously applied to the

BO context, where the GP model is built in an online fashion as the algorithm proceeds.
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5.3 Bayesian optimisation under localisation uncertainty

This section presents a framework for Bayesian optimisation under uncertain inputs. Here inputs refer

to points in the objective function f : Rd → R (Equation 2.30) input space, i.e. any x ∈ Rd. Input

noise can affect both the execution of a query to the objective function and the estimates of the locations

where these observations are taken, as further explained below. Hence one first needs to extend BO’s

surrogate model to incorporate uncertainty in the inputs. The method proposed here uses a Gaussian

process regression model with uncertain inputs (Section 2.2.4) as a prior. Using this GP model as a

prior allows BO to take into account localisation uncertainty affecting both the next query location and

the past locations where previous observations were collected. The remainder of this section starts by

describing the different sources of location noise that affect the BO process, followed by a review of the

GP modelling approach and ending with the proposed acquisition function to guide BO.

5.3.1 The effects of input noise into the BO process

To extend BO to the problems involving uncertain inputs in robotics, let us first consider how input

noise affects the BO process. As an illustration, consider the example in Figure 5.1. In robotics prob-

lems involving location estimation, input noise basically falls into two categories: localisation noise

and execution noise. The first refers to noise affecting the location estimate provided by the robot’s

localisation system. This noise is usually caused by imperfections in motion estimation and unknown

disturbances affecting other kinds of sensors, such as global positioning system (GPS) devices. The

second type, execution noise, is the combined effect of everything affecting the execution of the robot’s

path to a given target location, such as localisation noise, uncertain motion dynamics, etc.

Recalling Section 2.3, when a BO algorithm selects a query location xt, the usual assumption is that it

will observe yt = f(xt) + νt, where νt ∼ N(0, σ2ν) represents Gaussian observation noise. However, in

robotics applications, the actual location where the observation will be taken is:

x̃t = xt + εt , (5.1)

where εt ∼ Pε|xt represents execution noise following a (usually unknown) distribution Pε|xt . Then,

instead, we have:

yt = f(x̃t) + νt = f(xt + εt) + νt , (5.2)
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FIGURE 5.1: At time t−1, the robot is estimated to be at some x̃t−1 ∼ PLt−1 with mean
x̂Lt−1. The robot is then sent to target location xt. However, due to uncertainty in the
query execution, represented by PExt , the robot actually ends up at another location x̃t,
whose belief distribution, according to the localisation system, is represented by PLt .
The robot’s true locations and true path are indicated by the dashed lines.

as the observation the algorithm receives. In addition, the true query location x̃t cannot be estimated

exactly. After the query, a localisation system, instead, provides an independent estimate x̂Lt for the true

query location x̃t from observed sensor data zt (e.g. GPS and odometry estimates), which is such that:

x̂Lt = x̃t + ηt , (5.3)

where ηt ∼ Pη|zt represents localisation noise. Unlike the case for the execution noise, it is plausible

to assume that the localisation noise distribution Pη|zt is known, since classical localisation systems are

based on Bayesian filtering approaches (Thrun et al., 2006).

To account for the different sources of noise mentioned above, the true query location x̃t can be in-

terpreted as a random variable, which is distributed as x̃t|xt ∼ PExt , when conditioned on the target

location xt chosen by the BO algorithm. For example, if execution noise follows a zero-mean Gaussian

N(0,Σx) with location-dependent covariance matrix Σx, we have PEx = N(x,Σx). After the query,

the localisation system provides another probability distribution PLt estimating the robot’s true query

location xt. Then, when conditioned on the sensor data zt observed by the localisation system, we can

model the true query location as x̃t|zt ∼ PLt . If, for example, the localisation system is an extended

Kalman filter (Moore and Stouch, 2014), we have PLt = N(x̂Lt ,Σ
L
t ), for some known covariance matrix

ΣL
t informed by the system.

In a setting where execution noise is significant, standard BO may utilise x̂Lt as the input to be added

with the corresponding outcome yt into the observations dataset Dt, instead of the target location xt.
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However, if the localisation noise level is also significant, or if Pη|zt , and consequently PLt , is multi-

modal, x̂Lt by itself might not be a good estimator for x̃t. The next section describes a principled GP

modelling approach to take input noise into account when performing inference.

5.3.2 Using GP models taking probability measures

The expected GP model, as defined in Section 2.2.4, allows deriving a BO framework that takes into

account both localisation and execution noise in the decision-making process. In that model, given any

two random locations x̃ ∼ P and x̃′ ∼ P ′, the expected GP covariance is defined as a function of each

variable’s probability distribution by:

k̂(P, P ′) := E[k(x̃, x̃′)] =

∫ ∫
k(x,x′) dP (x) dP (x′) , (5.4)

where k is the original GP covariance function, which assumes noise-free inputs. If the two inputs

correspond to the same random variable x̃ ∼ P , the expected covariance is then given by:

k̂(P, P ) := E[k(x̃, x̃)] =

∫
k(x,x) dP (x) . (5.5)

In this framework, one can use the full information of the localisation distributions by adding them

directly to the GP dataset Dn = {(PLt , yt)}nt=1.2 Yet querying the GP model with the true PEx for each

candidate target location x is not possible. The mapping x 7→ PEx is generally unknown for it is hard

to estimate the execution noise distribution. Instead, a model P̂x can be used as a replacement for PEx

when querying the GP prior during the acquisition function optimisation. For instance, one may assume

P̂x = N(x, Σ̂x) for a given model mapping x 7→ Σ̂x, or simply Σ̂x = Σ̂ as a constant. Hence, for a

given target location x, the GP can approximate the distribution of f(x̃), where x̃|x ∼ PEx , as:

f(x̃)|Dn,x
approx.∼ N(µ̂n(P̂x), σ̂2n(P̂x)) , (5.6)

where:

µ̂n(P̂x) = k̂n(P̂x)T(K̂n + σ2νI)−1yn , (5.7)

σ̂2n(P̂x) = k̂(P̂x, P̂x)− k̂n(P̂x)T(K̂n + σ2νI)−1k̂n(P̂x) , (5.8)

2A dataset with distributions as elements is only an abstract representation which allows for a general treatment of
different types of location distributions. In practice, having a dataset comprised of, for example, Gaussian distributions
PLt = N(x̂Lt ,Σ

L
t ) and observation values yt simply translates to having Dn = {(x̂Lt ,ΣL

t , yt)}nt=1.
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with k̂n(P̂x) := [k̂(P̂x, P
L
1 ), . . . , k̂(P̂x, P

L
n )]T and [K̂n]ij = k̂(PLi , P

L
j ). Considering P̂x, at each

iteration t, the resulting BO loop should select as target location:

xt = argmax
x∈S

h(P̂x|Dt−1) , (5.9)

which is computed over the GP posterior using equations 5.7 and 5.8. Under this formulation, P̂x

provides BO with an estimate of how execution noise affects the utility of a query at a given target

location.

Algorithm 5: UIBO
Input:

S: search space

n: total number of iterations

1 for t ∈ {1, . . . , n} do

2 xt = argmax
x∈S

h(P̂x|Dt−1)

3 yt ← Observe f at x̃t|xt ∼ PExt
4 PLt ← Estimate x̃t from sensor data zt

5 Dt = Dt−1 ∪ {(PLt , yt)}

Result: µ̂n, σ̂2n

Algorithm 6: Standard BO
Input:

S: search space

n: total number of iterations

1 for t ∈ {1, . . . , n} do

2 xt = argmax
x∈S

h(x|Dt−1)

3 yt ← Sample f(xt)

4

5 Dt = Dt−1 ∪ {(xt, yt)}

Result: µn, σ2n

The proposed uncertain-inputs Bayesian optimisation (UIBO) algorithmic framework is summarised

in Algorithm 5 with a comparison to standard BO on the side (Algorithm 6). As a first difference,

UIBO selects target locations x ∈ S by maximising an acquisition function using the predictions of the

expected GP for P̂x in line 2. The main difference, however, is in line 4. UIBO takes the estimate given

by PLt alongside the observation yt as an entry to the expected GP’s dataset Dt. Standard BO, instead,

uses the target location xt as an input to its GP dataset (line 5). Both algorithms run for a given total

amount of iterations n. In the end, each method obtains a GP model that can be used for future tasks.

By Equation 5.4, the expected covariance function is also valid for deterministic inputs, so that the final

expected GP model can also be queried with point estimates by conventional planning algorithms.

Notice that P̂x is only applied to query the acquisition function. Determining the truePEx is a challenging

task, beyond the scope of this work. However, the next chapter will present theoretical guarantees for a

uncertain-inputs BO algorithm using an imperfect model for P̂x.
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5.3.3 A DUCB acquisition function for BO under localisation uncertainty

As formulated in Equation 5.9, the acquisition function needs to be able to handle probability distribu-

tions as inputs by using the expected GP model. For some acquisition functions, such as UCB (Srinivas

et al., 2012), it can be as straight forward as replacing x by P̂x and using the corresponding GP posterior

mean µ̂t−1(P̂x) (Equation 5.7) and variance σ̂2t−1(P̂x) (Equation 5.8). For others, some modifications

need to be made. Recall that the GP model in Section 5.3.2 provides a Gaussian approximation for

p(f(x̃)|Dt−1,x), which is actually not Gaussian. The UCB criterion only needs that βσ̂t−1(P̂x) re-

mains as a valid confidence bound for |f(x̃)−µ̂t−1(P̂x)|, which can be tuned by properly selecting large

enough values for β. On the other hand, if one were to try expected improvement (see Section 2.3.2)

as an acquisition function for uncertain-inputs BO, the Gaussian assumption might be far enough from

truth so that one would have to develop an appropriate approach to tune the acquisition function.

To guide a robot using BO, the distance between query locations should be considered, so that BO does

not take the robot too far through unknown regions and also so that other budget constraints are factored

in, such as a limited energy supply. The DUCB acquisition function then provides a simple but effective

approach for BO in this case. A sensible adaptation for the distance-penalty term to the uncertain-inputs

case is to use the distance between the candidate target location and the mean of the distribution of the

last sampled location (EPt−1 [x̃Lt−1] = x̂Lt−1). The resulting DUCB acquisition function is given by:

hDUCB(P̂x|Dt−1) = −µ̂t−1(P̂x) + βσ̂t−1(P̂x)− ζ‖x− x̂Lt−1‖2 (5.10)

for minimisation objectives. In the proposed BO framework, this acquisition function can guide a robot

learning models from noisy observations and localisation data, while taking into account both sources

of uncertainty. The experiments in the next section present a practical application in the case of terrain

traversability modelling.

5.4 Experiments

This section presents experimental results obtained with the proposed method for uncertain-inputs Bayesian

optimisation (UIBO) in the presence of localisation uncertainty. In all cases, the DUCB acquisition

function guided the BO exploration process. For framework comparisons, two other approaches were

considered. The first is standard BO, which does not consider any uncertainty in the location estimates.
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The second approach is unscented Bayesian optimisation (UBO) (Nogueira et al., 2016), which consid-

ers execution noise by means of the unscented transform (Wan and van der Merwe, 2000), but uses a

point estimate for the location of each observation. Experiments were performed both in simulation and

with a physical robot in an outdoor scenario.

In terms of GP settings, although the expected GP formulation (Section 5.3.2) is general enough to

use different types of covariance functions and input distributions, both simulation and physical ex-

periments employed the squared-exponential covariance function and assumed Gaussian noise. The

squared-exponential kernel, also known as the Gaussian kernel, is a universal approximator for contin-

uous functions (Sriperumbudur et al., 2011), so that GP models with this kernel are general enough.

In addition, Dallaire et al. (2011) provide an analytical derivation for the expected squared-exponential

covariance function in the case of Gaussian inputs. The standard squared exponential function is given

by:

k(x,x′) = σ2f exp

(
−1

2
(x− x′)TL−1(x− x′)

)
, (5.11)

where σ2f is a signal-variance parameter and L is a squared length-scales diagonal matrix. In this case,

the expected squared-exponential is derived as:

k̂(N(x̂i,Σi), N(x̂j ,Σj)) =
σ2f exp

(
−1

2(x̂i − x̂j)
T(L + Σi + Σj)

−1(x̂i − x̂j)
)

|I + L−1(Σi + Σj)(1− δij)|1/2
, (5.12)

where δij denotes the Kronecker delta, and σ2f and L are the same parameters as described above for

the original kernel. These GP hyper-parameters were fixed in simulations, and learnt online in the

experiments with a physical robot.

As model evaluation metrics, the root mean square error (RMSE) and weighted RMSE (WRMSE)

(Marchant and Ramos, 2012) values were computed from each method’s GP posterior mean (µ) and

the ground-truth values of f deterministically queried over a uniform grid covering the entire search

space. In these experiments, the WRMSE emphasises the reconstruction error in areas of lower vibra-

tion, being computed as:

WRMSE =

√√√√ 1

n

n∑
i=1

(
(µ(xi)− f(xi))

maxj f(xj)− f(xi)

maxj f(xj)−minj f(xj)

)2

. (5.13)

This metric is a better performance indicator for this chapter’s task than the plain RMSE, since the focus

is on finding areas that cause lower vibration to the robot’s body.
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FIGURE 5.2: Effect of different values for the DUCB parameter β using ζ = 1 on
UIBO’s performance.

5.4.1 Simulations

Simulations used synthetic functions as a model for terrain roughness to be learnt by BO. The task is to

find areas of low roughness while avoiding areas that cause excessive vibration, which could damage the

robot in reality. The learnt GP model should then be more accurate over areas of lower terrain roughness,

which are more interesting in practice.

To simulate a variety of terrains, each test run randomly generates a different synthetic function to

provide ground-truth vibration levels at each location on the terrain. The function is generated by using

an element from the reproducing kernel Hilbert space (Section 2.4) associated with the noise-free GP

covariance k, which is combined with a constant mean to ensure that vibration values are positive.

To simulate noise, execution noise is sampled from a Gaussian N(0, σ2EI) and localisation noise from

another Gaussian N(0, σ2LI). The approximate querying distribution P̂x applied by UIBO is set also

as a Gaussian N(x, σ2xI) and is the same distribution that is applied by unscented BO (UBO). The

experiments were set with σE = σL = 0.07 and σx = 0.1. Besides input noise, observation noise was

generated with σν = 0.1.

As BO settings, DUCB’s parameters were set as β = 10 and ζ = 1, which were manually tuned to

minimise both the mean experienced vibration and the final model’s WRMSE, for the three versions

of BO (see Figure 5.2 for a few results). The hyper-parameters for the GP models were fixed and

identical for each BO method. For fair comparisons, the methods based on deterministic-inputs GP

models used the equivalent noise-free version of the expected GP covariance function and the same

DUCB parameters, since these do not affect the GP model.
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(A) Paths and underlying vibration map

(B) Mean experienced vibration

FIGURE 5.3: Simulation results for standard BO, Unscented BO (UBO) and Uncertain-
Inputs BO (UIBO) methods for random functions modelling terrain-induced vibration.
(a) presents the true paths taken by each BO method using DUCB over the true vibra-
tion map in one of the test trials. The markers along the paths indicate the locations
where observations were taken. The big "X" mark (in magenta) indicates the starting
location, which is the same for the three methods at each trial. The plots in (b) present
performance results in terms of mean intensity of the experienced vibration. The results
were averaged over 30 trials, each with different maps, and the shaded areas correspond
to one standard deviation.

The simulations also assessed the performance of maximum entropy search (ES) as heuristics for BO.

These are not to be confused with methods based on the entropy of the optimum location distribution,

such as Hennig and Schuler (2012). Maximum entropy search in this chapter refers to heuristics seeking

only to reduce the entropy of the GP posterior as a whole, choosing to visit areas of high uncertainty,

as in Section 2.3.3. ES methods should provide a baseline for comparisons, since they do not consider

any estimate of the expected vibration nor distance penalties in their search. Following ES guidance, the

robot should obtain an accurate model, but experience high amounts of vibration and long paths.

Figure 5.3 presents results obtained in simulation. As seen in the test case in Figure 5.3a, standard

BO and UBO using DUCB end up having a much more exploratory behaviour due to noise. Excessive
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exploration leads the robot through possibly-damaging long paths over the terrain. UIBO, on the other

hand, is able to focus its exploration on areas that induce less vibration. Overall, Figure 5.3b shows

that UIBO’s performance significantly improves over iterations, finding areas of low vibration for the

robot to navigate through. Both the standard and the unscented versions of BO ended up having an

average performance much more similar to pure entropy search (ES). As entropy-based methods are

purely exploratory, there is no improvement in terms of mean experienced vibration, since the algorithm

is not optimising for that. In the case of BO-DUCB and UBO-DUCB, the uncertainty in localisation

corrupts the location estimates in the observations dataset, and this effect is not taken into account by

the GP model. As a result, both methods are misled into areas close to locations that they previously

observed, ending up into this more exploratory behaviour, instead of exploiting previous information.

Table 5.1 presents a summary of the final performance in terms of different metrics for each method.

As seen in Table 5.1, UIBO is able to outperform the other methods when using DUCB, obtaining a

good model, in terms of WRMSE, of the terrain roughness while travelling the shortest distance and

experiencing the least amount of vibration. Entropy search using the expected GP was able to obtain the

smallest RMSE and WRMSE values, but required a much longer distance to be travelled under the cost of

high vibration. In general, in terms of relative experienced vibration, BO and UBO methods with DUCB

performed worse due to the high amounts of localisation noise, which led them to behave similarly to

BO-ES. These results indicate that UIBO is able to effectively take into account the uncertainty in

localisation, keeping the robot safe while exploring an unknown environment.

Method RMSE WRMSE Distance Travelled Relative Vibration
BO-DUCB 0.59± 0.09 0.31± 0.05 31.25± 1.98 0.95± 0.04

UBO-DUCB 0.64± 0.12 0.34± 0.08 35.49± 1.23 0.95± 0.04
UIBO-DUCB 0.59± 0.15 0.26± 0.08 16.12± 2.04 0.61± 0.17

BO-ES 0.58± 0.10 0.32± 0.07 57.07± 2.73 1.00
UBO-ES 0.64± 0.12 0.34± 0.08 67.15± 2.56 1.00± 0.03
UIBO-ES 0.38± 0.05 0.22± 0.05 62.85± 2.06 0.99± 0.03

TABLE 5.1: Simulation results: average performance comparisons for each BO ap-
proach under different metrics with the corresponding standard deviation (30 trials).

5.4.2 Experiment with a real robot

An experiment with a physical robot outdoors tested the performance of the proposed uncertain-inputs

BO approach against standard BO with DUCB, as in Souza et al. (2014). The purpose of this experiment
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(A) Robot platform
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(B) Vibration measurements

FIGURE 5.4: Robot experiment details. (a) presents the experiments’ robotic platform.
(b) compares different methods to measure vibration using an IMU: raw corresponds
to the raw vertical acceleration readings (discounting gravity), mean corresponds to the
mean value of the raw measurements, considering a moving window of size 100, and
RMS corresponds to the root-mean-square value of the raw measurements in the same
window.

is to highlight the differences in performance and in behaviour between the two BO approaches. This

experiment presents localisation uncertainty in a real-world scenario, where the robot is tasked with

learning terrain roughness.

Experimental setup

The test platform was a small four-wheeled skid-steer robot, depicted in Figure 5.4a. The robot is

equipped with an on-board computer running ROS 3. Tests were performed in an area with terrain cov-

ered by grass and with some portions of harder ground exposed. The goal of the robot is to find areas

of low terrain roughness, while avoiding areas that induce excessive vibration to the platform. In this

kind of scenario, exposure to high amounts of vibration can cause damage to the robot’s hardware, while

interfering with readings from a few sensors, such as cameras and LIDAR’s.

The robot was equipped with an inertial measurement unit (IMU) sensor, placed on top of its chassis.

With the robot moving, vibration shows up mostly as linear acceleration along the robot’s vertical axis,

bouncing the robot up and down off the ground. Different methods, such as the mean and the root

mean square (RMS) values, were considered to measure vibration from a fixed moving window of

3The Robot Operating System: www.ros.org

www.ros.org
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raw acceleration measurements. As the robot should avoid areas of high roughness, the RMS value

demonstrated itself to be a better estimator, since it grows with the amplitude of the vibration, as pictured

in Figure 5.4b. The mean, on the other hand, should be always around zero, as each upwards acceleration

is immediately compensated by a subsequent fall.

As observations for the BO algorithms, the RMS vibration estimates were computed over a sliding

window of 100 IMU measurements and updated at a rate of 2 Hz as the robot is driving. To reduce the

effect of different driving speeds on the readings, the vibration estimates were posted whenever the robot

was driving at speeds between 0.4 and 0.7 m/s, where 0.7 m/s was the maximum speed allowed for the

path following control. These observations were combined with location estimates from an extended

Kalman filter (EKF) (Moore and Stouch, 2014), which was configured to fuse wheel odometry, IMU

and GPS estimates.

Both plain BO and UIBO were run for a fixed budget of 30 iterations, i.e. each algorithm was allowed

to choose 30 target locations to take the robot to. At each iteration, the robot drove autonomously

attempting to follow straight paths from its previous goal to the next goal, as given by the BO planner.

The iteration was signalled as finished whenever the robot arrived within a given radius from the goal.

After that, the GP model is updated with the new observations, the hyper-parameters are re-learnt by

maximising the GP log-marginal likelihood using COBYLA (Powell, 2007), and the planner selects a

new target. As the sample rate of observations is relatively low, both BO methods were able to repeatedly

execute this process online in close to real time.

As in the simulations, both GP models were configured with the squared-exponential covariance func-

tion. However, hyper-parameters were learnt online by maximising marginal likelihood (Section 2.2.2).

The DUCB acquisition function was configured with an uncertainty factor β = 10 and a distance factor

ζ = 0.5. UIBO applied as query distribution model an isotropic Gaussian with variance σ2x = 4 for each

coordinate. The choice of this value for σx was mainly based on a minimum distance-to-goal tolerance

for the robot’s path follower, which was set to 1.3 metres to cope with execution noise. Ideally, σx could

be estimated from data, which is left for future work.

Performance

Figure 5.5 presents the GP model obtained by each BO method and their paths, according to noisy EKF

location estimates. For both methods, the robot was placed at an initial location at the bottom left area of
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Method WRMSE [m/s2] RMSE [m/s2] Distance Travelled [m] Mean Vibration [m/s2]
BO 1.04 1.31 247 3.0

UIBO 0.83 1.33 92 2.1

TABLE 5.2: Field results: performance comparisons for each BO approach under dif-
ferent metrics. The WRMSE was computed between the posterior mean of the final GP
model at the locations in the validation dataset and the corresponding vibration mea-
surements at those locations.

the search space. As Figure 5.5 shows, initially the robot guided by UIBO goes through areas that cause

high vibration, possibly due to high initial GP uncertainty. However, UIBO is able to quickly adapt to

the terrain and concentrate its search over areas of low vibration. On the other hand, standard BO ends

up performing too much exploration passing more often over areas that cause excessive vibration.

For performance comparisons, a set of vibration measurements located using a real time kinematic

(RTK) GPS 4 device was collected to obtain high-precision location estimates. These measurements

were only collected for the purposes of validation, and not passed on to the BO planners, which relied

solely on a conventional GPS device fused into the EKF estimates. The magnitude of the error in the

conventional GPS location estimates varied around 3 metres with respect to the RTK GPS estimates,

which is able to provide centimetre accuracy. The posterior mean of a GP model built directly from the

validation data is shown in Figure 5.6. This model is presented only for visualisation purposes and was

not used to compute performance metrics, which were solely based on raw validation data. The model’s

hyper-parameters were determined as {m0, `, σf , σν} = {2.7, 2.8, 0.8, 1.0} by maximising the GP log-

marginal likelihood, where ` is the kernel length-scale and m0 is the GP mean function parameter.

Table 5.2 presents a performance summary. The WRMSE value for this experiment was computed be-

tween the posterior mean from each method’s final GP model, built from noisy EKF location estimates,

and the raw vibration measurements present in the validation dataset, collected using precise RTK GPS

location estimates. One can see that, for this experiment, UIBO is able to outperform standard BO by

producing a better model over areas of low roughness while experiencing less vibration and following a

much shorter path, confirming facts previously observed in simulations.

4Emlid Reach RTK: https://emlid.com/reach/

https://emlid.com/reach/
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FIGURE 5.5: Posterior mean of the GP model built by each BO method overlaid with
their respective paths according to locations estimated by an EKF fusing conventional
GPS, IMU and odometry. In both cases, the robot started at the lower left corner of the
map at the locations marked by a white cross.

FIGURE 5.6: For visualisation purposes, posterior mean of a GP model built from the
validation data taken with RTK GPS high-precision location estimates.

5.5 Summary

This chapter presented a new Bayesian optimisation method for active learning problems in robotics in

the cases where uncertainty in the location estimates is significant. The proposed method provides a

principled approach to account for this uncertainty affecting the inputs of a Gaussian process model,

which is applied as a prior by the BO algorithm. Execution noise is also considered by means of a query

distribution when optimising BO’s acquisition function. The method was proved to outperform other

BO approaches in simulation and in an experiment with a physical robot navigating over rough terrain.
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Therefore, the proposed method can be applied to problems where one is interested in mapping the

traversability of a terrain, while keeping the robot safe, in the midst of localisation and model uncertainty.

Some topics were not addressed by this chapter, but are worthy of future research work. One of them

is the estimation of execution noise, which could be done in an online way by other statistical methods,

for example, using maximum likelihood estimates for the parameters of a given distribution. To perform

such estimates, however, would require ground-truth data, which might be unavailable, leading to the

need for adaptive methods that can work with noisy localisation estimates, instead. Another topic is

the extension of the DUCB-based exploration to informative continuous path planning (Marchant and

Ramos, 2014) or to trajectory optimisation in goal-directed navigation, as in Chapter 3. Such extension

could allow BO to handle obstacles by integrating it with a path planner over a GP-based cost function

and to safely plan paths over longer distances by integrating predictions and the uncertainty of the model

along the path. For that, however, a suitable method to propagate execution noise through a candidate

path would have to be developed. This requires taking into account hard-to-model factors from both

the robot and the environment, such as stochastic motion dynamics and imperfect sensor information, to

derive a model of the paths distribution. An approach with similar issues is to derive transition models

which can be used for trajectory roll outs, as in stochastic motion planing. Then one could use the roll

outs as an approximate empirical distribution over the true paths.



CHAPTER 6

Bayesian optimisation under uncertain inputs

6.1 Introduction

The previous chapter investigated a planning problem where localisation uncertainty affects the guidance

of a robot and the location of measurements taken by the robot. Although applied to the task of learning

a terrain roughness model, the BO framework proposed in that chapter could also be applied to more

general optimisation problems. A question that comes alongside, however, is whether Bayesian opti-

misation algorithms can still find the global optimum of a function in situations involving input noise.

In addition, most theoretical guarantees given to BO algorithms are derived for a GP model whose do-

main is an Euclidean vector space, which is no longer the case when inputs are given as probability

distributions, as proposed in Chapter 5.

Classical BO algorithms account only for the noise affecting samples of the objective function for a

given query location (Brochu et al., 2010; Snoek et al., 2012; Chowdhury and Gopalan, 2017). Most

algorithms then assume that the function has been sampled precisely at the specified query location

within the given search space. However, there are certain problems, especially in the areas of robotics

and control, where this assumption typically does not hold. Chapter 5 presented one such problem in

the context of traversability estimation for robotics.

This chapter investigates optimisation problems where noise affects both the execution of a query and

the estimation of the actual query location. The investigation in this chapter provides a generalisation

and a more formal analysis of the framework proposed in Chapter 5. In particular, the main contribu-

tions 1 are theoretical guarantees, for a standard BO approach (Chowdhury and Gopalan, 2017) and a

1This work has been partially presented at the Workshop on Informative Path Planning and Adaptive Sampling (WIPPAS)
at the 2018 IEEE International Conference on Robotics and Automation (ICRA) as Oliveira et al. (2018a). A more up-to-date
version of this work and its results are also available in the proceedings of the 22nd International Conference on Artificial
Intelligence and Statistics (AISTATS) (Oliveira et al., 2019).
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novel BO algorithm, in problems involving noisy inputs. The proposed algorithm, named uncertain-

inputs Gaussian process upper confidence bound (uGP-UCB), employs a GP model for uncertain inputs

that allows extending the theoretical results in Chowdhury and Gopalan (2017) to the uncertain-inputs

setting. Experiments in simulation present empirical performance comparisons against the standard BO

approach and the unscented BO method (Nogueira et al., 2016).

6.2 Related work

A few BO approaches have been recently proposed to deal with problems where the execution of queries

to an objective function is affected by uncertainty. As mentioned in Chapter 5, Nogueira et al. (2016)

presented a method that applies the unscented transform (Wan and van der Merwe, 2000) to query BO’s

acquisition function. By considering a stochastic query execution process, the method is able to find

robust solutions to robotics problems such as grasping. Another approach to handle query uncertainty is

presented in Pearce and Branke (2017) to optimise stochastic simulations. In that case, query uncertainty

refers to imperfect knowledge about input variates for a simulation model (Lam, 2016). Pearce and

Branke use a GP model that takes in the full input variates vector and then apply Monte Carlo integration

to marginalise out the unknown input variates. In a similar context, Beland and Nair (2017) consider

a robust optimisation problem under stochastic constraints. However, their method takes the expected

value of the GP covariance function when computing estimates of an objective defined as an expected

loss function. Contrasted to the method in this chapter, all the approaches mentioned above only deal

with independent and identically distributed input noise and offer no known theoretical guarantees. The

data points in their GP datasets are also only point estimates, instead of full distributions as proposed

here.

This chapter adopts a BO framework similar to Chapter 5, with an important modification to the formu-

lation of the uncertain-inputs GP model, which leads to the first theoretical guarantees of BO algorithms

for uncertain-inputs optimisation problems. The work in this chapter sheds new light on the GP mod-

els in Girard (2004) and Dallaire et al. (2011), connecting them to the theory of kernel embeddings of

probability distributions (Muandet et al., 2016). The latter allows for upper bounds on the approxima-

tion error of BO in the uncertain-inputs setting when running an extension of the GP-UCB algorithm

(Srinivas et al., 2012; Chowdhury and Gopalan, 2017).
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Problems like the one illustrated in Figure 5.1 can be found whenever the objective is a function of an

agent’s unknown state, which is only partially controllable through a continuous set of actions. There-

fore, it is possible to relate the work in this chapter to partially-observable Markov decision processes

(POMDPs), which have been previously connected to BO (Marchant and Ramos, 2014; Ling et al.,

2016). POMDP problems are usually concerned with selecting actions that lead to optimal outcomes

over future evaluations. The work in this chapter, however, is concerned with a general optimisation

setup. In this setting, an agent is only concerned with maximising its immediate expected reward.

6.3 Problem formulation

Consider an optimisation problem where an algorithm sequentially selects target locations xt within a

compact search space S ⊂ X at which to query a function f : X → R seeking a global optimum. In

addition, the query execution itself is a stochastic process, leading the query to be made at some x̃t 6= xt,

instead. Hence, the goal is defined as finding:

x∗ ∈ argmax
x∈S

E[f(x̃)|x] , (6.1)

which defines a target location that maximises the expected value of the function f under the querying

process noise. This execution noise could be the outcome of a sequence of actions taken by the agent to

reach the target location xt, which would then result in dependence on the starting point x̃t−1 and the

actions themselves. However, assume that x̃t|xt ∼ PExt , i.e.:

E[f(x̃t)|xt] = Ex̃Et ∼PExt
[f(x̃Et )] =: EPExt [f ] , (6.2)

where PExt accounts for all possible starting points and actions taken to reach the given target location

xt, i.e. an average case scenario. Also assume that, after each query, the algorithm is provided with a

distribution PLt representing an estimate of the actual query location x̃t and observations yt = f(x̃t)+ζt,

where ζt is σζ-sub-Gaussian noise, for some σζ ≥ 0. Notice that the sub-Gaussian assumption on the

noise is more general than usual BO assumptions. Both Gaussian and bounded random variables meet

the sub-Gaussian assumption, for example (Boucheron et al., 2013).

Regret: In the design of a global optimisation algorithm, the main goal is to find the location of the

global optimum x∗. A measure of how close the algorithm got to the global optimum at round t is the

instant regret rt := maxx∈S f(x) − f(xt), as presented in Section 2.3.1. In the uncertain-inputs case,
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however, the noise affecting query execution might render maxx∈S f(x) a very unlikely outcome and

possibly not robust in certain situations (Nogueira et al., 2016). Therefore, a better performance measure

is the expected regret under uncertain inputs, defined as:

r̂t := max
x∈S

EPEx [f ]− EPExt [f ] . (6.3)

As mentioned in Section 2.3.1, a desirable property of an optimisation algorithm is to have no regret,

meaning that limn→∞mint≤n r̂t = 0. The no regret property is analogous to the concept of conver-

gence in local gradient-based optimisation, but it does not indicate the same, as the global optimisation

algorithm may keep exploring the search space, never actually converging. Instead, a bound on the cumu-

lative expected regret of the algorithm, R̂n :=
∑n

t=1 r̂t, indicates whether the algorithm can eventually

get arbitrarily close to the global optimum as iterations go by, since mint≤n r̂t ≤ R̂n/n. Therefore, a

goal for the algorithm’s design can be defined as minimising the cumulative expected regret.

Regularity assumptions: The problem in Equation 6.1 is still very general and may not be solvable

if considered for an arbitrary function f . Therefore, as a regularity assumption, f : X → R is assumed

to be an element of Hk, which is a reproducing kernel Hilbert space (RKHS, see Section 2.4), and

‖f‖k ≤ b, where b > 0 is known.2 The kernel k : X × X → R is assumed to be continuous and

bounded,3 with k(x,x) ≤ 1,∀x ∈ X . For the derivations, assume f ’s domain X to be an Euclidean

vector space X ⊆ Rd, d ∈ N, though some of the theoretical results remain valid for other types of

topological vector spaces.

6.4 The uncertain-inputs Gaussian process upper confidence bound

This section describes a method for Bayesian optimisation under uncertain inputs. The section starts by

presenting a Gaussian process that allows modelling objectives defined in terms of expectations directly.

This GP approach is then applied to derive a BO algorithm named uncertain-inputs Gaussian process

upper confidence bound (uGP-UCB), presented in the second part of the section.

2In general, for k(x,x) ≤ 1,∀x ∈ X , one can show that supx∈X |f(x)| ≤ ‖f‖k, so that the norm bound corresponds to
a supremum bound. The RKHS norm is also related to the Lipschitz constant by Steinwart and Christmann (2008, Cor. 4.36).

3This is the case for most of the popular kernels in the machine learning literature, such as the squared exponential and
the ones in the Matérn class (see Section 2.2.1). The maximum value of 1 is adopted only for convenience in deriving the
theoretical results. If the kernel maximum is given instead by some c > 0, the results are still valid by scaling the terms
dependent on b by c. This bounded variation assumption on k is common in the regret bounds literature for BO methods
(Srinivas et al., 2012; Chowdhury and Gopalan, 2017).
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6.4.1 A Gaussian process model for the expected function

To apply BO to the problem defined in Equation 6.1, one needs a model for the given objective. Let

P := P(X ,X) denote the set containing all probability measures on (X ,X), where X is the Borel

σ-algebra of X (see Section 2.6). We can then define an objective f̂ as a function over P as:

f̂ : P → R

P 7→ Ex̃∼P [f(x̃)] .
(6.4)

Considering the given regularity assumptions on the kernel k, we can define the mean map:

ψ : P → Hk

P 7→
∫
X
k(·,x) dP (x) .

(6.5)

For a X -valued random variable x̃ distributed according to P ∈ P , we then have that:

Ex̃∼P [f(x̃)] = 〈ψP , f〉k, ∀f ∈ Hk , (6.6)

where ψP := ψ(P ). If the kernel k is characteristic, such as radial kernels on Rd (Sriperumbudur et al.,

2011), ψ is injective, defining a one-to-one relationship between measures in P and elements of Hk.

Therefore, ψP is referred to as the kernel mean embedding of P (Muandet et al., 2016).

Using ψ as defined in Equation 6.5, one can construct kernels over the set of probability measures P . In

particular, for any P, P ′ ∈ P , we have that:

k̂(P, P ′) := 〈ψP , ψP ′〉k =

∫
X

∫
X
k(x,x′) dP (x) dP ′(x′) (6.7)

defines a positive-definite kernel over P (Muandet et al., 2012). This kernel is associated with a RKHS

Hk̂ containing functions over the space of probability measures P . Besides the linear kernel in Equa-

tion 6.7, many other kernels on P can be defined, e.g. radial kernels using ‖ψP − ψP ′‖k as a distance

metric. However, the simple kernel in Equation 6.7 provides a useful property to model the objective

function f̂ in Equation 6.4, as presented next.

LEMMA 6.1 (Expected function). Any f ∈ Hk is continuously mapped to a corresponding f̂ ∈ Hk̂,

which is such that:

∀P ∈ P, f̂(P ) = EP [f ]

‖f̂‖k̂ = ‖f‖k .
(6.8)
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Under the additional assumption that k is characteristic, we have that the mapping f 7→ f̂ constitutes

an isometry betweenHk andHk̂ and is also invertible.

PROOF SKETCH. The proof for the first statement follows from the fact that Dirac measures are

members of P , since they are defined on any σ-algebra. The second statement then follows from the

injectivity of the mean map ψ when k is characteristic. The full proof is presented in the appendix

(Section A.2). �

As a positive-definite kernel, k̂ defines the covariance function of a Gaussian process GP(0, k̂) mod-

elling functions over P . This GP model can then be applied to learn f̂ from a given set of past observa-

tions Dt−1 = {(Pi, yi)}t−1i=1. Under a zero-mean GP assumption, the value of f̂(P∗) for a given P∗ ∈ P

follows a Gaussian posterior distribution with mean and variance given by:

µ̂t−1(P∗) = k̂t−1(P∗)T(K̂t−1 + λI)−1yt−1 , (6.9)

σ̂2t−1(P∗) = k̂(P∗, P∗)− k̂t−1(P∗)T(K̂t−1 + λI)−1k̂t−1(P∗) , (6.10)

where k̂t−1(P∗) := [k̂(P∗, P1), . . . , k̂(P∗, Pt−1)]T and [K̂t−1]ij = k̂(Pi, Pj). Recall that for a f̂ ∈ Hk̂,

f̂ is generally not a sample from the GP (see Section 2.4.3). However, we always have that µ̂t−1 ∈ Hk̂,

allowing the GP to learn an approximation for f̂ . Therefore, in these equations, λ ≥ 0 is simply a

parameter that can be set independently from the true observation noise variance (cf. Section 2.2).

Contrast with the expected GP model: Although very similar, the GP model proposed above pro-

vides useful properties for learning f̂ from data when compared to the expected GP (Section 2.2.4). In

the latter, Dallaire et al. (2011) formulate k̂, instead, as the expected covariance function under the joint

distribution of both random inputs. As a result, any diagonal entry in the expected GP covariance matrix

has the form:

Ex̃∼Pi [k(x̃, x̃)] =

∫
X
k(x,x) dPi(x) 6=

∫
X

∫
X
k(x,x′) dPi(x) dPi(x

′) = 〈ψPi , ψPi〉k , (6.11)
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since both inputs correspond to the same random variable. Another difference is that, for any given

f ∈ Hk, we have that f ’s variance under an input distribution P is given by:

VP [f ] = Ex̃∼P [(f(x̃)− EP [f ])2] = Ex̃∼P [(〈f, k(·, x̃)− ψP 〉k)2]

≤ ‖f‖2kEx̃∼P [‖k(·, x̃)− ψP ‖2k]

= ‖f‖2kEx̃∼P [k(x̃, x̃)− 2ψP (x̃) + ‖ψP ‖2k]

= ‖f‖2k(Ex̃∼P [k(x̃, x̃)]− ‖ψP ‖2k) ,

(6.12)

where the second line follows by the Cauchy-Schwartz inequality, and the last equality follows from the

linearity of the expectation and Ex̃∼P [ψP (x̃)] = 〈ψP , ψP 〉k = ‖ψP ‖2k. Then, considering the inequality

above, if we had that k̂(P, P ) = 〈ψP , ψP 〉k = ‖ψP ‖2k was equivalent to Ex̃∼P [k(x̃, x̃)], as is the case

in the expected GP formulation, VP [f ] would be zero, which is not true in general. Therefore, the

expected GP covariance function is not directly related to f̂ and differs from the kernel in Equation 6.7.

Consider, for example, a set of Gaussian measures Pi = N(x̂i,Σi), i = 1, . . . , n. In the case of a

squared-exponential kernel with signal variance σ2f and length-scales matrix L, Equation 6.7 resolves to

(Girard, 2004, Eq. 3.53):

k̂(N(x̂i,Σi), N(x̂j ,Σj)) =
σ2f exp

(
−1

2(x̂i − x̂j)
T(L + Σi + Σj)

−1(x̂i − x̂j)
)

|I + L−1(Σi + Σj)|1/2
, (6.13)

which differs from the expected covariance function formulation by the lack of a term in the denominator

that accounts for inputs corresponding to the same random variable (cf. Equation 2.26).

When to use the expected GP model: For a query at x̃|x ∼ P , the expected GP in Section 2.2.4 actu-

ally proposes a Gaussian approximation to the distribution over the function value p(f(x̃)|x,Dn), when

both f and x̃ are random variables. When f ∼ GP(0, k), the uncertain-inputs GP model (this chapter),

instead, provides a model over the expected value distribution Ex̃[f(x̃)|x,Dn] ∼ N(µ̂n(P ), σ̂2n(P )),

which is exact due to the linearity of the expectation and the invariance of Gaussians under linear trans-

formations. Therefore, one should use Dallaire et al. (2011)’s model when concerned with inference over

the value of f(x̃), while the uncertain-inputs GP provides a better alternative when the concern is over

the value of Ex̃[f(x̃)|x], as in this chapter. Moreover, due to the lack of the adjustment for the case when

both inputs correspond to the same random variable, which causes the collapse of the covariance func-

tion into a single integral (see Equation 6.11), the uncertain-inputs GP predictive variance is generally

lower than the expected GP’s. Using the uncertain-inputs GP to infer over f(x̃), instead of Ex̃[f(x̃)|x],

might then mislead BO’s exploration of the search space due to the underestimated uncertainty.
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Remark: As a final remark, using a GP model with covariance function as defined in Equation 6.7

is not a new idea. Similar GP formulations have been previously proposed in the literature to account

for Gaussian input noise (Rasmussen and Ghahramani, 2003; Girard, 2004). Under the RKHS mean

embeddings approach, the kernel in Equation 6.7 has also been applied to learn GP models over bag-

of-words data (Yoshikawa et al., 2015). The novelty here, instead, lies in the reinterpretation of this GP

as a model for an objective function defined in terms of expected values of another function, as in the

formulation of the uncertain-inputs optimisation problem (Section 6.3).

6.4.2 The uGP-UCB algorithm

The GP model proposed in the previous section allows deriving a BO algorithm to solve the problem

in Equation 6.1. Given a set of past observations Dt−1 = {(Pi, yi)}t−1i=1, the following defines an upper

confidence bound (UCB) acquisition function:

h(P |Dt−1) = µ̂t−1(P ) + βtσ̂t−1(P ) , (6.14)

where βt is a parameter controlling the exploration-exploitation trade-off. The theoretical results in the

next section will show that βt can be set accordingly to maintain a high-probability upper bound on f̂ .

Since the upper confidence bound in Equation 6.14 is defined over a GP model for uncertain inputs, this

acquisition function and the corresponding BO algorithm are named uncertain-inputs Gaussian process

upper confidence bound (uGP-UCB).

Querying the GP model with x 7→ PEx would allow selecting points based on an estimate for EPEx [f ].

However, in general, the true mapping x 7→ PEx is unknown, as discussed in Section 5.3.2. Instead, one

can use a model x 7→ P̂x whose approximation error |EPEx [f ]− EP̂x
[f ]| is small.

Algorithm 7 presents the uGP-UCB algorithm. Equipped with the acquisition function in Equation 6.14,

at each iteration t, the algorithm selects the target location xt that maximises h(P̂x|Dt−1) (line 2). In

line 3, the function f is queried at some location x̃t|xt ∼ PExt . After the query is done, the algorithm is

provided with an observation yt = f(x̃t)+ζt and an independent estimate for x̃t given by PLt (line 4), as

described in Section 6.3. In line 5, the GP model is updated with the new observation pair (PLt , yt). This

process then repeats for a given number of iterations n. As a result, the algorithm provides an estimate

of the optimum location x∗ given as the target location with the best estimated outcome x∗n (line 6).
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Algorithm 7: uGP-UCB
Input:

S: search space
n: total number of iterations

1 for t ∈ {1, . . . , n} do
2 xt = argmax

x∈S
µ̂t−1(P̂x) + βtσ̂t−1(P̂x)

3 yt ← Observe f at x̃t|xt ∼ PExt
4 PLt ← Estimate x̃t
5 Dt = Dt−1 ∪ {(PLt , yt)}
6 x∗n = argmax

t∈{1,...,n}
µ̂n(P̂xt)

Result: x∗n

When compared to Chapter 5, the method proposed here differs in both purpose and properties. The

DUCB method in Section 5.3.3 aims at exploring while minimising travelled distance. The uGP-UCB

method, instead, deals with a more general optimisation scenario, where distances are not considered,

and may not even make sense, depending on the application. In terms of properties, DUCB methods do

not provide any known theoretical guarantees. The expected GP model used in Chapter 5 also makes it

difficult to analyse the theoretical properties of the method in that chapter. As discussed in Section 6.4.1,

the expected GP is not a suitable model for the expected value of f , relying only on an approximate

covariance function. The uncertain-inputs GP in Section 6.4.1, however, allows for a proper derivation

of the resulting approximation error between the model and the true f̂ . This fact leads to the theoretical

results presented in the next section.

6.5 Theoretical analysis

This section presents theoretical results bounding the expected regret (Section 6.3) of the uGP-UCB

algorithm and a standard BO approach proposed by Chowdhury and Gopalan (2017), which was not

originally designed to handle input noise. Before the main theoretical results are presented, the section

introduces the results obtained by Chowdhury and Gopalan for their method and the definitions related

to their results. The theoretical analysis presented in this chapter is mainly based on their results, but it

also brings new insights into BO methods for optimisation under uncertain inputs. Section 6.5.2 presents

bounds obtained for the expected regret of IGP-UCB in the noisy-inputs setting, and Section 6.5.3 fol-

lows with the regret bounds for uGP-UCB.
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6.5.1 Regret in the deterministic-inputs case

The main theoretical foundations for the regret of GP-UCB algorithms have been presented in Srinivas

et al. (2010) and several works followed after that. Recently, Chowdhury and Gopalan (2017) proposed a

version of the algorithm, named improved Gaussian process upper confidence bound (IGP-UCB), which

attains no regret under very general observation noise assumptions. More specifically, they assume only

additive conditionally sub-Gaussian noise affecting the observations of f , an assumption which is advan-

tageous for the analysis of the uncertain-inputs BO case. The definition of conditionally sub-Gaussian

observation noise is based on an abstraction of the BO algorithm in terms of the variables involved in

the optimisation process. This general abstraction is presented next, followed by a restatement of the

main result in Chowdhury and Gopalan (2017).

For an asymptotic analysis of BO, both the queries {xt}∞t=1 and the observation noise {νt}∞t=1 can be

treated as sequences of random variables. At a given round t ≥ 1, the current history {xi, νi}ti=1 gen-

erates a σ-algebra Ft := A(xi, νi; i ∈ {1, . . . , t}). The history also determines the next query location

xt+1, which is deterministically selected based on the UCB given by the GP posterior. Considering an

abstract probability space (E ,E, PE) where all the random variables in {xt}∞t=1 and {νt}∞t=1 are defined,

the sequence {Ft}∞t=0, where F0 := {∅, E}, defines a filtration in E (see Section 2.6). Both {xt}∞t=1 and

{νt}∞t=1 are adapted to the filtration {Ft}∞t=0, and {xt}∞t=1 is also predictable with respect to it. Under a

setting such as this, the sub-Gaussian condition on the sequence {νt}∞t=1 is formally defined as:

DEFINITION 6.2. A sequence of real-valued random variables {νt}∞t=1 adapted to a filtration {Ft}∞t=0

is said to be conditionally σν-sub-Gaussian, σν > 0, if:

∀t ≥ 1, ∀λ ∈ R, E[eλνt |Ft−1] ≤ eλ
2σ2
ν/2 (a.s.) . (6.15)

The notation E[eλνt |Ft−1] denotes a conditional expectation given the σ-algebra Ft−1 (see Section 2.6.3).

The conditional expectation given a σ-algebra is also a random value, so that the inequality above is de-

fined as holding almost surely (a.s.), i.e. with probability one. As an example, any zero-mean random

variable that is Gaussian with variance at most σ2ν or bounded with values lying in [−σν , σν ] is σν-sub-

Gaussian (Boucheron et al., 2013).
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Besides the definitions above, the theoretical results in Chowdhury and Gopalan (2017) are also depen-

dent on the maximum information gain γn, which is defined as:

γn := max
Q⊂X :|Q|=n

I(yQ, fQ) , (6.16)

The mutual information I(yQ, fQ) above is given by:

I(yQ, fQ) =
1

2
log |I + λ−1KQ| , (6.17)

under the assumption that yQ = fQ + νQ, with νQ ∼ N(0, λI), and fQ := [f(x)]x∈Q ∈ Rn.

Similar to the regularity assumptions in this chapter (Section 6.3), IGP-UCB also considers f ∈ Hk,

and consequently not a sample from GP(0, k) (see discussion in Section 2.4.3). For IGP-UCB, the GP is

only a model to approximate f . Considering the definitions above, the following theorem upper bounds

the cumulative regret of IGP-UCB in the deterministic-inputs setting.

THEOREM 6.3 (Chowdhury and Gopalan (2017, Theorem 3)). Let δ ∈ (0, 1), ‖f‖k ≤ b, and νt be con-

ditionally σν-sub-Gaussian noise. Then, running IGP-UCB with βt = b+ σν
√

2(γt−1 + 1 + log(1/δ))

for f ∈ Hk(S), and a compact S ⊂ Rd, the cumulative regret of the algorithm is bounded by

O(
√
n(b
√
γn + γn)) with high probability. Specifically, we have that:

P
{
Rn ∈ O

(
b
√
nγn +

√
n(γn + log(1/δ))

)}
≥ 1− δ . (6.18)

The result above states that the cumulative regret of IGP-UCB is bounded by a quantity dependent on

the maximum information gain γn. Bounds for γn are available in the literature (see Srinivas et al.,

2012, Theorem 5) depending on the choice of covariance function. For common choices, such as the

squared exponential and the Matérn class of functions (Section 2.2.1), γn grows sub-linearly with n. In

particular, for the squared-exponential kernel, γn is O((log n)d+1) (Srinivas et al., 2010, Thr. 5). In this

case, the cumulative regret of IGP-UCB grows sub-linearly, so that the algorithm attains asymptotically

no regret. The result in Theorem 6.3 is mainly based on the following noise concentration bound.

THEOREM 6.4 (Theorem 1 in Chowdhury and Gopalan (2017)). Let {xt}∞t=1 be a Rd-valued discrete-

time stochastic process predictable with respect to the filtration {Ft}∞t=0, i.e. xt is Ft−1-measurable for

all t ≥ 1. Let {νt}∞t=1 be a real-valued stochastic process such that, for some σν ≥ 0 and for all t ≥ 1,

νt is (a) Ft-measurable, and (b) σν-sub-Gaussian conditionally on Ft−1. Let k : Rd × Rd → R be a

symmetric, positive-definite kernel, and let 0 < δ ≤ 1. For a given η > 0, with probability at least 1−δ,
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the following holds simultaneously for all t ≥ 0:

‖νt‖2((Kt+ηI)−1+I)−1 ≤ 2σ2ν log

√
|(1 + η)I + Kt|

δ
, (6.19)

where Kt is the t-by-t kernel matrix with elements [Kt]i,j = k(xi,xj), and ‖α‖2M := αTMα, for

a positive-definite matrix M ∈ Rt×t and a vector α ∈ Rt. We also have that, if Kt is almost surely

positive definite for all t ≥ 1, the result above also holds for η = 0.

The result in Theorem 6.4 bounds the growth of the observation noise vector with respect to the GP

kernel matrix. This norm bound allows showing that with high-probability:

∀x ∈ S, |f(x)− µt−1(x)| ≤ βtσt−1(x) , (6.20)

when βt has the form in Theorem 6.3 (see Chowdhury and Gopalan, 2017, Thr. 2). This derivation

follows from the decomposition:

∀x ∈ S, |f(x)− µt−1(x)| = |f(x)− kt−1(x)TKt−1yt−1|

= |f(x)− kt−1(x)TKt−1(f t−1 + νt−1)|

≤ |f(x)− kt−1(x)TKt−1f t−1|+ |kt−1(x)TKt−1νt−1| .

(6.21)

Looking at the last line, one can shown that the first term on the right-hand side is bound by bσt−1(x),

while a bound for the second term can be derived from the result in Theorem 6.4 and its relation to

the information gain (Equation 6.17). For more details on this derivation, the reader is referred to

Chowdhury and Gopalan (2017, App. C). Since IGP-UCB selects query locations xt that maximise

µt−1(x) + βtσt−1(x), the instant regret can be bound with high-probability as:

∀t ≥ 1, rt := max
x∈S

f(x)− f(xt)

≤ µt−1(xt) + βtσt−1(xt)− f(xt)

≤ 2βtσt−1(xt) .

(6.22)

Then we can bound the cumulative regret in terms of βt and the GP predictive variances, which determine

the information gain (recall Equation 2.42), leading to the result in Theorem 6.3.

To bound the expected regret of uGP-UCB, Section 6.5.3 will derive a result analogous to the one

in Theorem 6.4. However, since the query location estimate PLt is independently provided, and not

necessarily predictable at t − 1, the analogous of Theorem 6.4 should not depend on the predictability
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assumption, besides having to be applicable under non-Euclidean domains, such as P . Firstly, the next

section will present theoretical results for the expected regret of IGP-UCB under query execution noise.

6.5.2 Bounding the expected regret of IGP-UCB

This section derives theoretical guarantees for Chowdhury and Gopalan’s IGP-UCB when applied to

the uncertain-inputs optimisation problem (Equation 6.1). This kind of result allows analysing how is

the performance of IGP-UCB affected by input noise and how one should adapt the algorithm to that.

The derivation starts by analysing the assumptions necessary for the result in Theorem 6.3 to hold in

the uncertain-inputs setting. The main result in this section then basically follows as a re-statement of

Theorem 6.3 in terms of the cumulative expected regret. The remainder of the section then presents

cases where the necessary assumptions for the main result hold in practice.

The main assumptions of Theorem 6.3 are that the objective function is a member of the RKHS Hk(S)

(as defined in Section 2.4.2) and that the observation noise νt is conditionally sub-Gaussian. To analyse

IGP-UCB in the uncertain-inputs setting, firstly, one can define an objective function g as:

g : S → R

x 7→ EPEx [f ] .
(6.23)

However, there is no guarantee that such g is a member of Hk(S) for a general mapping x 7→ PEx

and kernel k. Secondly, even if g ∈ Hk(S) in some special case, the resulting observation noise νt =

yt − g(xt) is not necessarily conditionally σν-sub-Gaussian for a given σν > 0. What is observable is

only the value of yt = f(x̃t) + ζt, where f is the original deterministic-inputs objective, x̃t|xt ∼ PExt ,

and ζt 6= νt is conditionally sub-Gaussian. The following theorem summarises the conditions under

which IGP-UCB in the noisy-inputs setting attains bounded expected regret.

THEOREM 6.5 (Noisy-inputs IGP-UCB regret). Let f ∈ Hk, where k : X×X → R is a positive-definite

kernel on X ⊆ Rd. Assume that:

(1) the mapping x 7→ EPEx [f ] defines a function g ∈ Hk(S) and ‖g‖k ≤ b;

(2) for a given σF > 0, the random variable defined by ∆fPEx := f(x̃) − EPEx [f ], where x̃|x ∼

PEx , is σF -sub-Gaussian for all x ∈ S; and

(3) ζt is conditionally σζ-sub-Gaussian for all t ≥ 1.
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Then setting the observation noise parameter as σν :=
√
σ2F + σ2ζ and running IGP-UCB with βt :=

b+ σν
√

2(γt−1 + 1 + log(1/δ)) leads to the cumulative expected regret R̂n being bound by:

P
{
R̂n ∈ O

(
b
√
nγn +

√
n(γn + log(1/δ))

)}
≥ 1− δ . (6.24)

PROOF. Theorem 6.5 establishes sufficient conditions for Theorem 6.3 to be applicable to the noisy-

inputs settings. The observation noise, as perceived by the GP model, is νt := yt−g(xt), where g follows

the definition in Equation 6.23 and xt is the location selected by IGP-UCB according to the setting for

βt in Theorem 6.5. Observations yt are taken at x̃Et ∼ PExt , instead, yielding:

νt = yt − g(xt) = ζt + f(x̃Et )− EPExt [f ] = ζt + ∆fPExt
. (6.25)

Given that xt is Ft−1-measurable, as it is predictable given {xi, νi}t−1i=1, we have that ∆fPExt
is σF -sub-

Gaussian when conditioned on Ft−1. By assumption 3, ζt is conditionally sub-Gaussian. Since ζt and

∆fPExt
are independent given Ft−1, we have that:

∀λ ∈ R, E[exp (λνt)|Ft−1] = E
[
exp

(
λ
(
ζt + ∆fPExt

))∣∣∣Ft−1]
= E

[
exp (λζt) exp

(
λ∆fPExt

)∣∣∣Ft−1]
≤ eλ

2σ2
ζ/2eλ

2σ2
F /2 = eλ

2(σ2
ζ+σ

2
F )/2 = eλ

2σ2
ν/2 (a.s.) ,

(6.26)

so that νt is conditionally σν-sub-Gaussian by Definition 6.2.

Assumption 1 states that g ∈ Hk(S), meeting the remaining requirement for Theorem 6.3. Therefore,

running IGP-UCB with σν and b ≥ ‖g‖k, following the settings in Theorem 6.3, leads to cumulative

regret bounds for g as in Equation 6.18. From the definition in Equation 6.3, rt for g is equivalent to the

expected regret r̂t for f , which leads to the conclusion in Theorem 6.5. �

The result above states that, as long as the observation noise sub-Gaussian parameter σν is large enough

to accommodate for the additional variance propagated to the output observations due to input noise,

IGP-UCB should attain similar for the cumulative expected regret to those of Theorem 6.3. However,

it is possible that the extra output noise variance σ2F required to compensate for all the execution noise

distributions at each target x ∈ S is impractically large. For example, the RKHS norm bound ‖f‖k ≤ b

and k(x,x) ≤ 1,∀x ∈ X , indicate that |f(x)| ≤ ‖f‖k = b,∀x ∈ X . Then, for any x̃ ∼ P , ∆fP :=

f(x̃) − EP [f ] is b-sub-Gaussian, but b, which bounds f itself, is too big as a noise parameter. The

following result presents special cases where the output noise level may be more suitable in practice.
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PROPOSITION 6.6. Let f ∈ Hk and k : Rd×Rd → R be an at least twice-differentiable positive-definite

kernel with finite `2k ≥ sup
x∈Rd

sup
i∈{1,...,d}

∂2k(x,x′)
∂xi∂x′i

|x=x′ . Then, for a given P ∈ P and x̃ ∼ P , we have that

∆fP := f(x̃)− EP [f(x̃)] is a σF -sub-Gaussian random variable in the following cases:

(1) σF = ‖f‖k`ktr(Σ)1/2, if P is Gaussian with covariance matrix Σ;

(2) σF = 1
2‖f‖k`k

√∑d
i=1 σ

2
i , if P has compact support, with |x̃i − x̂i| ≤ 1

2σi, i ∈ {1, . . . , d},

where x̃ ∼ P and x̂ = E[x̃].

PROOF SKETCH. The proof follows by applying concentration inequalities for Lipschitz-continuous

functions of random variables (Boucheron et al., 2013). Any f ∈ Hk, as defined, is `f -Lispchitz

continuous with `f = `k‖f‖k (Steinwart and Christmann, 2008, see Corollary 4.36). The full proof is

presented in the appendix (Section A.3). �

The assumptions in the result above are met for PEx if the execution-noise is uniformly bounded or

Gaussian. Therefore, Theorem 6.5 says that it is possible to guarantee asymptotic convergence for BO

methods that can tolerate sub-Gaussian observation noise, such as IGP-UCB (Chowdhury and Gopalan,

2017), in the noisy-inputs setting.

Theorem 6.5 assumes that the function g, as defined in Equation 6.23, is a member of Hk(S). This

assumption is equivalent to the common requirement that the mapping x 7→ E[f(x̃)|x] defines an ele-

ment of Hk for any given f ∈ Hk when working with conditional mean embeddings (Muandet et al.,

2016). In fact, PEx is the conditional distribution of the executed query x̃ given the target location x.

Most of the theoretical results in the kernel embeddings literature are based on discrete domains, where

the former assumption typically holds. However, optimisation problems involving input noise are more

common if considering functions with continuous domains. Hence, to verify whether g as assumed in

Theorem 6.5 exists for any f ∈ Hk, where the domain X is continuous, new results are required.

In the continuous domain case, translation-invariant kernels, such as the squared exponential, are popular

in the kernel machines literature due to their modelling properties. For instance, Sriperumbudur et al.

(2011) demonstrated that any radial kernel on Rd is a universal approximator for continuous functions.

Therefore, one may wonder if the assumption that the mapping x 7→ Ex̃|x[f(x̃)|x] is an element ofHk,

for any f ∈ Hk, is valid for some special case involving translation-invariant kernels. The next result

presents a case where such assumption holds.
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PROPOSITION 6.7. Let k be a bounded, measurable, translation-invariant kernel on (X ,X), where X

is a topological vector space, and X is its Borel σ-algebra. Assume that the mapping x 7→ Px ∈ P(X )

is such that, for any x ∈ S ⊂ X , x̃ ∼ Px is decomposable as x̃ = x + ε, where ε is independent

and identically distributed, i.e. ε ∼ PE ∈ P(X ). Then we have that, for any f ∈ Hk, the mapping

x 7→ EPx [f ] defines a function g ∈ Hk(S), and ‖g‖k ≤ ‖f‖k.

PROOF SKETCH. The proof follows by interpreting ε as a random translation on f . Since the kernel

is translation invariant, it happens that the norm of any ε-shifted function fε is equivalent to the norm

of the original function. Then picking g as the restriction of EPE [fε] ∈ Hk to S ⊂ X leads to the

conclusion. Section A.4 presents the full proof. �

Proposition 6.7 implies that Theorem 6.5 is applicable whenever the execution noise εE is independent

and identically distributed regardless of the target location x. One can always make such assumption by

considering expectations with respect to some marginal distribution of the execution noise. However, in

cases where the distribution of εE changes significantly from target to target, algorithms such as uGP-

UCB, which allow querying the GP model with different distributions per target, can lead to better BO

performance.

6.5.3 The expected regret of uGP-UCB

As presented in Theorem 6.5, guarantees for IGP-UCB in the noisy-inputs setting are limited by a few

assumptions. Proposition 6.7 requires i.i.d. execution noise for the first assumption in Theorem 6.5 to

hold. The cases where observation noise is guaranteed to be sub-Gaussian at a suitable level for practical

applications are also limited by Proposition 6.6. Considering these restrictions, the proposed uGP-UCB

method offers advantages for optimisation problems with uncertain inputs by allowing for an arbitrary

execution noise distribution. In addition, uGP-UCB can also take advantage of the post-query location

estimates x̃Lt ∼ PLt , which can induce lesser output noise, i.e. ∆fPLt := f(x̃Lt ) − EPLt [f ] has low

variance. However, deriving regret bounds for uGP-UCB offers additional challenges when compared

to the IGP-UCB case, as presented in this section.

Main result

The theoretical analysis of uGP-UCB will consider a general setting where P̂ tx ≈ PEx denotes a model

that is allowed to change as the algorithm proceeds, such as an adaptive model that is learnt online.
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Recall that the regret bounds presented so far depend on the maximum information gain γn. As an

analogy, in the case of uGP-UCB, given an arbitrary set {Pt}nt=1 ⊂ P , we have:

I(yn; f̂n | {Pt}nt=1) =
1

2
log |I + λ−1K̂n| , (6.27)

where [K̂n]ij = k̂(Pi, Pj), i, j ∈ {1, . . . , n}. The results presented next will assume the existence of

upper bounds γ̂Ln and γ̂Qn for any possible I(yn; f̂n | {PLt }nt=1) and I(yn; f̂n | {P̂ txt}
n
t=1), respectively.

This assumption is reasonable as the kernel is bounded. Deriving the exact formulation of these bounds

for arbitrary kernels is out of the scope of this thesis. However, Proposition 6.10 will present one case

where these quantities are upper-bounded by their deterministic-inputs counterparts, which have known

upper bounds (Srinivas et al., 2010, Thr. 5). Considering these definitions, the following presents the

main result regarding the expected regret of uGP-UCB. The proof will be presented in the second part

of this section.

THEOREM 6.8. Let δ ∈ (0, 1), f ∈ Hk, and b ≥ ‖f‖k. Consider ζt as σζ-sub-Gaussian noise. Assume

that both k and location estimates PLt satisfy the conditions for ∆fPLt to be σF -sub-Gaussian, for a

given σF > 0, for all t ≥ 1. Then, running uGP-UCB with:

βt = b+
√

2(σ2F + σ2ζ )(I(yt−1; f̂ t−1 | {PLi }ti=1) + 1 + log(1/δ)) (6.28)

and a model x 7→ P̂ tx, such that:

∀t ≥ 1, ∃ρt ≥ 0 : max
x∈S

∣∣∣EPEx [f ]− EP̂ tx [f ]
∣∣∣ ≤ ρt (a.s.) , (6.29)

the cumulative expected regret satisfies:

P

{
R̂n ∈ O

(
n∑
t=1

ρt +

√
nγ̂Qn

(
b+

√
γ̂Ln + log(1/δ)

))}
≥ 1− δ . (6.30)

Theorem 6.8 states that the cumulative expected regret of uGP-UCB follows a similar pattern to that of

IGP-UCB, but depends on the error between the query execution model and the true query distribution.

In addition, the two information gain bounds, the one with respect to the location estimates in PLt and

the other with respect to the query distributions P̂ txt , affect differently the regret of the algorithm, with

the latter having a larger impact on it. According to Theorem 6.8, assuming a sub-linear growth for γ̂Qn

and γ̂Ln , the expected regret of uGP-UCB can asymptotically converge to zero if ρt → 0 as t → ∞,

since:

lim
n→∞

min
t≤n

r̂t ≤ lim sup
n→∞

R̂n
n
≤ lim sup

n→∞

1

n

n∑
t=1

ρt ≤ lim sup
t→∞

ρt (6.31)
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with probability at least 1−δ. Otherwise, even if ρt 6→ 0, but to a constant c > 0, i.e. ρt → c, uGP-UCB

still reaches the global optimum within a value difference given by c. Therefore, using a GP model for

uncertain inputs is advantageous if one has a model P̂ tx ≈ PEx such that the modelling error ρt is small.

The error term ρt is implementation dependent and can be bounded in terms of divergence measures

via Pinsker’s inequality (Boucheron et al., 2013) or by metrics such as the maximum mean discrepancy

‖ψPEx − ψP̂ tx‖k (Muandet et al., 2016).

In practical applications, considering execution noise as marginally i.i.d. Gaussian has been a popular

approach when dealing with problems involving uncertain inputs (Mchutchon and Rasmussen, 2011;

Nogueira et al., 2016). In this case, the following result provides a constant upper bound for the approx-

imation error ρt.

PROPOSITION 6.9. Let X = Rd, f ∈ Hk and ‖f‖k ≤ b. Assume that, for any x ∈ S, the query

distribution PEx is Gaussian with mean x and positive-definite covariance ΣE . Then, using a Gaussian

model P̂x with same mean and a given constant positive-definite covariance matrix Σ̂, we have that:

∀x ∈ S,
∣∣∣EPEx [f ]− EP̂x

[f ]
∣∣∣ ≤ b

2

(
tr(Σ̂

−1
ΣE)− d+ log

|Σ̂|
|ΣE |

)1/2

.

PROOF SKETCH. The result follows from Pinsker’s inequality (Boucheron et al., 2013), which re-

lates the total variation distance between two probability distributions to their Kullback-Leibler diver-

gence. The reader is referred to Section A.6 for a complete proof. �

The remaining important terms that appear in Theorem 6.8 are γ̂Qn and γ̂Ln , the upper bounds on the

uncertain-inputs GP information gain with respect to the query model and the estimated location distri-

butions, respectively. Considering any set PS ⊂ P , define:

γ̂n(PS) := sup
R⊂PS :|R|=n

I(yn; f̂n | R) , (6.32)

where yn = f̂n + ν ′n, f̂n ∼ N(0, K̂n) and ν ′n ∼ N(0, λI), with [K̂n]ij = k̂(Pi, Pj), Pi, Pj ∈ R.

As the set PS is not necessarily compact, a maximum for I(yn; f̂n | R) may not exist. However, in

the case of location distributions affected by i.i.d. noise, this maximum exists and is equivalent to the

deterministic-inputs maximum information gain.

PROPOSITION 6.10. Consider a compact set S ⊂ X , a distribution Pε ∈ P , with EPε [ε] = 0, and a set:

Pε(S) := {P ∈ P | x̃ ∼ P =⇒ x̃ = x̂ + ε, ε ∼ Pε, x̂ ∈ S} , (6.33)
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which is the set of location distributions with mean on S and affected by i.i.d. Pε-noise. Let k : X×X →

R be a continuous translation-invariant kernel, and k̂ : P ×P → R be according to Equation 6.7. Then

we have that:

∀n ≥ 1, γ̂n(Pε(S)) ≤ γn(S) . (6.34)

PROOF SKETCH. This result follows from an analysis similar to the applied in the proof of Propo-

sition 6.7. One can prove that Kn − K̂n is positive definite for Kn built with {x̂t}nt=1 ⊂ S. As the

information gain grows monotonically with the determinant of the matrices, the deterministic inputs in-

formation gain will always be higher for that choice of inputs, leading to the inequality in the statement.

A complete proof is derived in Section A.7. �

The above proposition suggests that one can apply upper bounds available for the deterministic-inputs

information gain γn (Srinivas et al., 2012, Theorem 5) to bound γ̂Qn and γ̂Ln . Moreover, since the regret

bounds for IGP-UCB and uGP-UCB are a function of their respective maximum information gain, which

is also true for other theoretically-proven GP-UCB strategies (Srinivas et al., 2012), Proposition 6.10

also implies that uGP-UCB should be able to obtain lower expected regret in optimisation problems

with input noise than other GP-UCB methods, as Section 6.6 will show. Finally, notice that although βt

has a similar formulation for both IGP-UCB and uGP-UCB, σF is derived from PLt for the latter, while

depending on PEx for the former. Hence, lower-noise location estimates from PLt can benefit uGP-UCB.

The result in Proposition 6.10 also reveals that, under an increase in the input noise level, the optimisation

problem as defined in Equation 6.1 becomes simpler. The magnitude of the expected value of the

objective function decreases as the variance of the input distributions increases by a natural filtering

effect that expectations have. Assuming supx∈X |f(x)| = maxx∈S f(x), we have that:

max
x∈S

EPEx [f ] = max
x∈S

∫
X
f(x′) dPEx (x′) ≤ sup

x∈X
|f(x)| = max

x∈S
f(x) , (6.35)

where equality holds for all f ∈ Hk if and only if PEx = Dx for any x ∈ S, i.e. the noise-free case4.

This fact confirms the practical intuition that optimising functions under the influence of query execution

noise is only worthwhile if the noise levels are not excessively high.

4Dx denotes the Dirac measure on x (see Equation 2.74).
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Proof of the main result

To derive similar results to Theorem 6.3 for uGP-UCB, the relevant stochastic processes and the asso-

ciated filtration {Ft}∞t=0, which the processes are adapted to, need to be defined. Firstly, as a general

abstraction, the sequence of true query locations at each round t forms a stochastic process {x̃t}∞t=1.

Both the execution noise and the noise affecting the observations in the GP dataset influence where the

process {x̃t}∞t=1 will be realised at round t. Secondly, as proposed, uGP-UCB uses the distributions

PLt as entries in the GP dataset. These estimates are only available after x̃t is realised and are subject

to external factors. Therefore, it is reasonable to assume that PLt itself is a random variable or, more

appropriately, a random measure.

The theory of random measures has a vast literature with different formal definitions of what a random

measure is (Suquet, 2009; Kallenberg, 2017). For the theoretical analysis of uGP-UCB, the objective

function is dependent on the probability measures only via expectations (Section 6.3). In addition, all

the relevant operations involving measures can be defined in terms of inner products in the RKHS via

the embeddings with ψ (Equation 6.5). For these purposes then, a useful definition of a random measure

is given by Berlinet and Thomas-Agnan (2004, p. 233, Def. 36), and it is adapted here as:

DEFINITION 6.11. LetM+ denote the set of all non-negative finite measures on (X ,X). Let k : X ×

X → R denote a positive-definite characteristic kernel on X , so that the map:

ψ :M+ → Hk (6.36)

M 7→
∫
X
k(·,x) dM(x) (6.37)

is injective. A random measure on (X ,X) based on a probability space (E ,E, P ) is a random variable

defined on (E ,E, P ) and taking almost surely its values in ψ(M+) equipped with the σ-algebra induced

by Bk := B(Hk), which is the Borel σ-algebra ofHk.

Under this definition, each random probability measure P (·) is identified by the embedding ψ(·)
P , which

is aHk-valued random variable, i.e.:

ψ
(·)
P : E → Hk

ω 7→ ψ
(ω)
P =

∫
k(·,x) dP (ω)(x)

(6.38)

One may question whether this map is measurable, since a random variable is by default a measurable

map from a probability space into another measurable space (see Section 2.6.3). As presented by Berlinet
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and Thomas-Agnan (2004, p. 195, Cor. 12), a map ξ(·) : E → Hk is E-Bk-measurable if and only if, for

any x ∈ X , the function ω 7→ ξ(ω)(x) = 〈ξ(ω), k(·,x)〉k is a real-valued random variable. In the case

of uGP-UCB, this is implied by assuming that ω 7→ E
P
L(ω)
t

[f ] defines a real-valued random variable for

any f ∈ Hk, which is a reasonable assumption to consider. Including ψ(·)
PLt

as one of the generators of

the σ-algebra Ft in E then makes these maps Ft-Bk-measurable.

Regarding the observation noise, only point estimates of EPLt [f ] are available with each pair (PLt , yt) as

yt = f(x̃Lt ) + ζt, where x̃Lt ∼ PLt . Here x̃Lt denotes the random variable representing the distribution

of the true query location x̃t when PLt is known. To extend the results in Theorem 6.3, one needs the

equivalent observation noise as perceived by the GP model, i.e. νt := yt − f̂(PLt ), to be conditionally

sub-Gaussian. This definition depends on the existence of a filtration {Ft}∞t=0. Considering the other

random variables, Ft can be defined as the σ-algebra generated by the random variables {ζi, x̃i, PLi }ti=1

for all t ≥ 1. For the particular case of t = 0, F0 := {E ,∅} is a valid choice. For this choice, it is clear

that {Ft}∞t=0 defines a filtration, since Fi ⊂ Fj , for every i ≤ j, i, j ∈ {0, 1, 2, . . . }. Furthermore, as νt

is fully determined by ζt, x̃t and PLt , this definition implies that νt is Ft-measurable, so that the process

{νt}∞t=1 is adapted to {Ft}∞t=0. At any round t, the observation noise νt is conditionally sub-Gaussian

with respect to Ft−1, if it satisfies the condition in Definition 6.2 for some σν > 0. Therefore, the

conditional sub-Gaussianity of νt depends on requirements on ζt and PLt .

Contrasting with IGP-UCB in terms of the assumptions in Theorem 6.4 on the stochastic processes, the

t’th GP input PLt is not predictable at round t− 1 in the case of uGP-UCB. As a random variable, only

xt is Ft−1-measurable, since it is chosen as a deterministic function of the history {ζi, x̃i, PLi }
t−1
i=1. In

addition, the GP domain P is not Euclidean any more, since the set of Borel probability measures on

X cannot be defined as a finite-dimensional vector space for an arbitrary X ⊆ Rd. Therefore, a new

base result is needed to bound the expected regret of uGP-UCB. The following theorem generalises the

result in Chowdhury and Gopalan (2017, Thr. 1) to arbitrary domains and removes the predictability

assumption on the inputs in the GP dataset.

THEOREM 6.12. Consider an arbitrary domain W and a σ-algebra W on it. Let {ξt}∞t=1 be a W-

valued discrete-time stochastic process adapted to the filtration {Ft}∞t=0. Let {νt}∞t=1 be a real-valued

stochastic process such that, for some σν ≥ 0 and for all t ≥ 1, νt is (a) Ft-measurable, and (b) σν-sub-

Gaussian conditionally on Ft−1. Let k̂ : W ×W → R be a W-measurable, bounded positive-definite

kernel, and let 0 < δ ≤ 1. For a given η > 0, with probability at least 1 − δ, the following holds
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simultaneously for all t ≥ 0:

‖νt‖2((K̂t+ηI)−1+I)−1 ≤ 2σ2ν log

√
|(1 + η)I + K̂t|

δ
, (6.39)

where ‖x‖2M := xTMx, for a positive-definite matrix M. We also have that, if K̂t is almost-surely

positive-definite for all t ≥ 1, the above result holds for η = 0.

PROOF. Theorem 6.12 is analogous to Theorem 6.4. Therefore, this proof will follow similar steps

to the ones taken in the proof of Theorem 6.4, i.e. the proof of Theorem 1 in Chowdhury and Gopalan

(2017, App. A). The first part of the proof relies on showing that the following quantity defines a

non-negative super-martingale (see Section 2.6.4) relative to the filtration {Ft}∞t=0:

mu,s
t := exp

(
νT
t ut,s −

σ2ν
2
‖ut,s‖22

)
, (6.40)

where u :W → R, ut,s := [u(ξ1) + s1, . . . , u(ξt) + st]
T with given s := {si}∞i=1, si ∈ R. Define:

∆u,s
t := exp

(
νt(u(ξt) + st)−

σ2ν
2

(u(ξt) + st)
2

)
. (6.41)

By the sub-Gaussian inequality in Definition 6.2, we have that:

∀t ≥ 1, ∀λ ∈ R, E
[
exp

(
νtλ−

σ2ν
2
λ2
) ∣∣∣∣ Ft−1] ≤ 1 (a.s.) . (6.42)

The condition for {mu,s
t }∞t=1 to be a non-negative super-martingale is that:

1 ≤ i ≤ j =⇒ E[mu,s
j |Fi] ≤ m

u,s
i (a.s.) . (6.43)

Since all the random variables in mu,s
t−1 are Ft−1-measurable, we have that:

E[mu,s
t |Ft−1] = E[mu,s

t−1∆
u,s
t |Ft−1] = mu,s

t−1E[∆u,s
t |Ft−1] . (6.44)

Then, if E[∆u,s
t |Ft−1] ≤ 1 (a.s.) holds for all t ≥ 1, the condition in Equation 6.43 is satisfied.

Compared to Lemma 2 in the proof of Theorem 1 in Chowdhury and Gopalan (2017, Appendix A), the

predictability assumption is not required for {ξt}∞t=1. Although xt, as selected by IGP-UCB, is Ft−1-

measurable, making Equation 6.42 directly applicable, ξt is not Ft−1-measurable. However, we can take

expectations of ∆u,s
t with respect to a larger σ-algebra with respect to which ξt is measurable and that

contains Ft−1. Let F′t−1 := A(Ft−1 ∪ A(ξt)), which is the σ-algebra generated by ξt and Ft−1, so that
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Ft−1 ⊂ F′t−1 and ξt is F′t−1-measurable. In this case, we can say that:

E[∆u,s
t | F′t−1] = E

[
exp

(
νt(u(ξt) + st)−

σ2ν
2

(u(ξt) + st)
2

) ∣∣∣∣ ξt,Ft−1] ≤ 1 (a.s.) (6.45)

by taking λ := u(ξt)+st in Equation 6.42. By iterating the conditional expectations (see Section 2.6.3),

since Ft−1 ⊂ F′t−1, we then have that:

E[∆u,s
t |Ft−1] = E[E[∆u,s

t |F′t−1]|Ft−1] ≤ 1 (a.s.) . (6.46)

From the latter, it follows that {mu,s
t }∞t=1 is a non-negative super-martingale relative to {Ft}∞t=0.

The rest of the proof follows by repeating the same steps applied in the proof of Theorem 1 in Chowd-

hury and Gopalan (2017, Appendix A). The remaining steps in their proof are not dependent on the

nature of the domainW nor on the measurability of {ξt}∞t=1, so that they can be followed exactly. For

completeness, the remainder of the proof of Theorem 6.12 is presented in Section A.5. �

As a first step to prove the main result for uGP-UCB (Theorem 6.8), the theorem above generalises

Theorem 6.4 to bound the growth of the observation noise vector νt in terms of the uncertain-inputs GP

information gain, determined by the known quantity |(1+η)I+K̂t| via Equation 6.27. To contrast, The-

orem 6.4 was only valid for Euclidean input domains, while the uncertain-inputs GP model operates on

a non-Euclidean domain, the space of probability measures P . Another restriction is that Theorem 6.4

required the inputs sequence to be predictable with respect to past data, but the query location distri-

bution estimates PLt ’s parameters can suffer from other sources of randomness, such as execution and

localisation noise in robotics applications (see Section 5.3.1). Theorem 6.12 relaxes the predictability

assumption, allowing one to bound the observation noise vector in uGP-UCB with an adapted, but not

necessarily predictable, sequence of data inputs.

DefiningW := P , the determinant |(1 + η)I + K̂t| is related, by a logarithmic factor, to the information

gain of a uncertain-inputs GP model with covariance k̂ and observation noise variance set as 1 + η. In

both uGP-UCB and IGP-UCB, the GP is only used as a model for f̂ ∈ Hk̂, not as a prior distribution.

This fact allows one to freely set the GP model’s observation noise variance as 1 + η 6= σ2ν , for some

arbitrary η > 0. The following result then provides an upper confidence bound on the approximation

error of this GP model with respect to the true f̂ ∈ Hk̂.

THEOREM 6.13. Let k be a characteristic kernel on X , f ∈ Hk and ‖f‖k ≤ b. Under the assumptions

of Theorem 6.12, letW := P and k̂ be defined as in Equation 6.7. Consider a GP model with covariance
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function k̂ and observation noise model variance set to 1 + η, η > 0. Then, given Dt = {(Pi, yi)}ti=1,

with probability at least 1− δ, the following holds:

∀P ∈ P, ∀t ≥ 1, |µ̂t−1(P )− f̂(P )| ≤
(
b+ σν

√
2(I(yt−1; f̂ t) + 1 + log(1/δ))

)
σ̂t−1(P ) ,

(6.47)

where I(yt−1; f̂ t) is the GP information gain, µ̂t−1 and σ̂2t−1 are the GP posterior mean and variance

given Dt, and η := 2/n.

PROOF. This result is based on Theorem 2 in Chowdhury and Gopalan (2017) with only the fol-

lowing modifications. The proof in Chowdhury and Gopalan (2017, App. C) is centred around linear-

algebra operations with canonical feature maps. As the uncertain-inputs kernel k̂ is such that k̂(P, P ′) =

〈ψP , ψ′P 〉k, we can use ψ, instead of the canonical feature map φ̂ : P 7→ k̂(·, P ) and still obtain sim-

ilar results. In this case, the feature space is Hk 6= Hk̂. However, observe that for any f ∈ Hk,

〈ψP , f〉k = EP [f ] = f̂(P ), where f̂ ∈ Hk̂ is unique by Lemma 6.1.

For any f, g ∈ Hk, let fTg := 〈f, g〉k, so that fTψP = EP [f ] = f̂(P ) and ψT
PψP ′ = k̂(P, P ′) for

any P, P ′ ∈ P . Given {Pi}ti=1 ⊂ P , define Ψt := [ψP1 , . . . , ψPt ]
T, which is analogous to a t-by-

∞-matrix or, more precisely, a linear operator from Hk to Rt. With that, we have K̂t = ΨtΨ
T
t , and

k̂t(P ) = ΨtψP for all P ∈ P . For any λ > 0, the matrices (ΨT
t Ψt+λI) and (ΨtΨ

T
t +λI) are positive

definite, and (ΨT
t Ψt + λI)ΨT

t = ΨT
t (ΨtΨ

T
t + λI). Then we have that:

ΨT
t (ΨtΨ

T
t + λI)−1 = (ΨT

t Ψt + λI)−1ΨT
t . (6.48)

From the definitions, we also have that (ΨT
t Ψt + λI)ψP = ΨT

t k̂t(P ) + λψP . Using Equation 6.48, we

then get:

ψP = ΨT
t (ΨtΨ

T
t + λI)−1k̂t(P ) + λ(ΨT

t Ψt + λI)−1ψP , (6.49)

which leads to:

λfT(ΨT
t Ψt + λI)−1ψP = fTψP − fTΨT

t (ΨtΨ
T
t + λI)−1k̂t(P ) (6.50)

for any f ∈ Hk. In particular, taking f = ψP , yields:

λψT
P (ΨT

t Ψt + λI)−1ψP = k̂(P, P )− k̂t(P )T(ΨtΨ
T
t + λI)−1k̂t(P ) = σ̂2t (P ) , (6.51)

which is the GP posterior variance.
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Considering the formulation of the GP posterior mean µ̂t(P ) = k̂t(P )T(K̂t + λI)−1yt, where yt =

f̂ t + νt and f̂ t := [f̂(Pi)]
t
i=1, we have that:

|f̂(P )− µ̂t(P )| ≤ |f̂(P )− k̂t(P )T(K̂t + λI)−1f̂ t|+ |k̂t(P )T(K̂t + λI)−1νt| . (6.52)

Observe that:

|f̂(P )− k̂t(P )T(K̂t + λI)−1f̂ t| = |ψT
P f − ψT

PΨT
t (ΨtΨ

T
t + λI)−1Ψtf |

= |λψT
P (ΨT

t Ψt + λI)−1f |

≤ ‖λ(ΨT
t Ψt + λI)−1ψP ‖k‖f‖k

= ‖f‖k
√
λψT

P (ΨT
t Ψt + λI)−1λ(ΨT

t Ψt + λI)−1ψP

≤ b
√
λψT

P (ΨT
t Ψt + λI)−1(ΨT

t Ψt + λI)(ΨT
t Ψt + λI)−1ψP

= bσ̂t(P ) ,

(6.53)

where the second equality follows from Equation 6.50, the first inequality is by Cauchy-Schwartz and

the last equality is from Equation 6.51. Turning our attention to the second term in the right-hand side

of Equation 6.52, we have:

|k̂t(P )T(K̂t + λI)−1νt| = |ψT
PΨT

t (ΨtΨ
T
t + λI)−1ν̂t|

= |ψT
P (ΨT

t Ψt + λI)−1ΨT
t ν̂t|

≤
∥∥∥(ΨT

t Ψt + λI)−1/2ψP
∥∥∥
k

∥∥∥(ΨT
t Ψt + λI)−1/2ΨT

t ν̂t

∥∥∥
k

=
√
ψT
P (ΨT

t Ψt + λI)−1ψP

√
(ΨT

t ν̂t)
T(ΨT

t Ψt + λI)−1ΨT
t ν̂t

= λ−1/2σ̂t(P )

√
ν̂T
t ΨtΨ

T
t (ΨtΨ

T
t + λI)−1ν̂t

= λ−1/2σ̂t(P )

√
ν̂T
t K̂t(K̂t + λI)−1ν̂t ,

(6.54)

where the second equality uses Equation 6.48, the inequality is by Cauchy-Schwartz, and the fourth

equality applies both Equation 6.51 and again Equation 6.48. Thus, combining the two last results into

Equation 6.52, we have:

|f̂(P )− µ̂t(P )| ≤ σ̂t(P )

(
b+ (1 + η)−1/2

√
ν̂T
t K̂t(K̂t + (1 + η)I)−1ν̂t

)
, (6.55)
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where λ := 1 + η, η ≥ 0 as in Theorem 6.12. A few linear algebra manipulations yield:

(K̂t + ηI)(K̂t + (1 + η)I)−1 = ((K̂t + ηI)−1 + I)−1 . (6.56)

With that, we obtain:

ν̂T
t K̂t(K̂t+(1+η)I)−1ν̂t ≤ ν̂T

t (K̂t+ηI)(K̂t+(1+η)I)−1ν̂t = ν̂T
t ((K̂t+ηI)−1 +I)−1ν̂t . (6.57)

Now we can apply Theorem 6.12 to upper-bound this last term, which leads to:

∀t ≥ 0, ∀P ∈ P, |µ̂t(P )− f̂(P )| ≤ σ̂t(P )
(
b+ ‖ν̂t‖((K̂t+ηI)−1+I)−1

)
≤ σ̂t(P )

b+ σν

√
2 log

|(1 + η)I + K̂t|1/2
δ

 (6.58)

with probability5 at least 1− δ.

As a final step, observe that |(1 + η)I + K̂t| = |I + (1 + η)−1K̂t||(1 + η)I|. Then we have:

log |(1 + η)I + K̂t| = log |I + (1 + η)−1K̂t|+ t log(1 + η) = 2I(yt; f̂ t) + ηt (6.59)

Setting η := 2/n, with n as the total number of iterations (see Algorithm 7), the result in Theorem 6.13

follows. �

One can use the error bounds from Theorem 6.13 to bound the cumulative expected regret R̂n for uGP-

UCB. However, there is a dependence on the information gain I(yn; f̂n | {PLt }nt=1) and on the predictive

variances σ̂2t−1(P̂
t
xt), which are also related to information gain (see Equation 2.42). As mentioned at

the start of the section, a reasonable assumption is to consider the existence of an upper bound γ̂Ln for

the information gain which does not depend on a particular choice of distributions. Proposition 6.10

presented a special case where this assumption holds with the deterministic-inputs information gain γn

as an upper bound. Consider then that:

∀n ≥ 1, I(yn; f̂n | {PLt }nt=1) ≤ γ̂Ln (a.s.) , (6.60)

where the notation I(yn; f̂n | {PLt }nt=1) emphasises the dependence on the given set of inputs {PLt }nt=1,

i.e.:

I(yn; f̂n | {PLt }nt=1) =
1

2
log |I + (1 + η)−1K̂n| , (6.61)

5Notice that for t = 0, we simply have |µ̂0(P ) − f̂(P )| = |f̂(P )| ≤ ‖f̂‖k̂
√
k̂(P, P ) = ‖f‖kσ̂0(P ) ≤ bσ̂0(P ), which

is always true, as it follows from the Cauchy-Schwartz inequality, for a zero-mean GP model and b ≥ ‖f‖k = ‖f̂‖k̂.
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with [K̂n]ij = k̂(PLi , P
L
j ), i, j ∈ {1, . . . , n}. One may also consider an adaptive model P̂ tx to learn PEx

from the previous t observations. Therefore, consider that:

∀n ≥ 1, ∃γ̂Qn > 0 : I(yn; f̂n | {P̂ txt}
n
t=1) ≤ γ̂Qn (a.s.) . (6.62)

Now we are ready to prove the main result, which is restated below, followed by the proof.

THEOREM 6.8 (Restatement from p. 117). Let δ ∈ (0, 1), f ∈ Hk, and b ≥ ‖f‖k. Consider ζt as

σζ-sub-Gaussian noise. Assume that both k and location estimates PLt satisfy the conditions for ∆fPLt

to be σF -sub-Gaussian, for a given σF > 0, for all t ≥ 1. Then, running uGP-UCB with:

βt = b+
√

2(σ2F + σ2ζ )(I(yt−1; f̂ t−1 | {PLi }ti=1) + 1 + log(1/δ)) (6.28)

and a model x 7→ P̂ tx, such that:

∀t ≥ 1, ∃ρt ≥ 0 : max
x∈S

∣∣∣EPEx [f ]− EP̂ tx [f ]
∣∣∣ ≤ ρt (a.s.) , (6.29)

the cumulative expected regret satisfies:

P

{
R̂n ∈ O

(
n∑
t=1

ρt +

√
nγ̂Qn

(
b+

√
γ̂Ln + log(1/δ)

))}
≥ 1− δ . (6.30)

PROOF. The following derivations will first apply Theorem 6.13 and the error bound ρt to upper-

bound the expected regret r̂t for each choice of uGP-UCB. With these bounds and the monotonicity of

βt, the cumulative expected regret can be upper bounded. A few algebraic manipulations will transform

the dependence on the distributions PLt and P̂ txt into a dependence on the corresponding information

gain upper bounds.

Assuming that the mapping x → P̂ tx satisfies Equation 6.29, by Lemma 6.1 and Theorem 6.13 with

σ2ν := σ2F + σ2ζ , we have that:

∀x ∈ S, ∀t ≥ 1, |µ̂t−1(P̂ tx)− EPEx [f ]| ≤ |µ̂t−1(P̂ tx)− EP̂ tx [f ]|+ |EP̂ tx [f ]− EPEx [f ]|

≤ βtσ̂t−1(P̂ tx) + ρt .
(6.63)

with probability at least 1− δ. The choice of xt by uGP-UCB is such that:

∀t ≥ 1, max
x∈S

EP̂ tx [f ] ≤ max
x∈S

µ̂t−1(P̂ tx) + βtσ̂t−1(P̂ tx) = µ̂t−1(P̂ txt) + βtσ̂t−1(P̂ txt) (6.64)
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with high probability. We also have that:

∀t ≥ 1, max
x∈S

EPEx [f ] = max
x∈S

EPEx [f ]− EP̂ tx [f ] + EP̂ tx [f ]

≤ max
x∈S

∣∣∣EPEx [f ]− EP̂ tx [f ]
∣∣∣+ max

x∈S
EP̂ tx [f ]

≤ ρt + max
x∈S

EP̂ tx [f ] (a.s.)

(6.65)

Consequently, applying Equation 6.63, we obtain:

∀t ≥ 1, r̂t = max
x∈S

EPEx [f ]− EPExt [f ]

≤ ρt + βtσ̂t−1(P̂ txt) + µ̂t−1(P̂ txt)− EPEx [f ]

≤ 2ρt + 2βtσ̂t−1(P̂ txt)

(6.66)

with high probability. As βn ≥ βt, ∀t ≤ n, it then follows that:

n∑
t=1

r̂t ≤ 2

n∑
t=1

(βtσ̂t−1(P̂ txt) + ρt) ≤ 2

(
βn

n∑
t=1

σ̂t−1(P̂ txt)

)
+ 2

n∑
t=1

ρt (6.67)

with probability at least 1− δ. Bounding the first term in the last inequality, we have that:

n∑
t=1

σ̂t−1(P̂ txt) ≤

(
n

n∑
t=1

σ̂2t−1(P̂
t
xt)

)1/2

(6.68)

by the Cauchy-Schwartz inequality.

Under the general regularity assumptions in Section 6.3, k(x,x) ≤ 1, ∀x ∈ X , so that k̂(P, P ) ≤ 1 and

0 ≤ σ̂2t−1(P ) ≤ 1, ∀P ∈ P . As log(1 + α) ≥ α/2, for 0 ≤ α ≤ 1, using η > 0 as in Theorem 6.13, we

have that:

(1 + η)−1σ̂2t−1(P ) ≤ 2 log(1 + (1 + η)−1σ̂2t−1(P )) . (6.69)

Therefore, the GP predictive variance is bounded by:

σ̂2t−1(P ) ≤ 2(1 + η) log(1 + (1 + η)−1σ̂2t−1(P )) . (6.70)

We can use Lemma 5.3 in (Srinivas et al., 2012) to relate the predictive variance to the information gain

by:

I(yn; f̂n | {P̂ txt}
n
t=1) =

1

2

n∑
t=1

log
(

1 + (1 + η)−1σ̂2t−1(P̂
t
xt)
)
. (6.71)
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With this result, we obtain:

n∑
t=1

σ̂t−1(P̂ txt) ≤

(
2(1 + η)n

n∑
t=1

log
(

1 + (1 + η)−1σ̂2t−1(P̂
t
xt)
))1/2

=

√
4(1 + η)nI(yn; f̂n | {P̂ txt}

n
t=1)

≤
√

4(1 + η)nγ̂Qn ∈ O
(√

nγ̂Qn

)
.

(6.72)

At the same time, considering βn in Equation 6.67, we have:

βn = b+ σν

√
2
(
I(yn−1; f̂n−1 | {PLt }

n−1
t=1 ) + 1 + log(1/δ)

)
≤ b+ σν

√
2(γ̂Ln + 1 + log(1/δ)) ,

(6.73)

where f̂n ∼ N(0, K̂n) with [K̂n]ij = k̂(PLi , P
L
j ). Combining these results yields:

R̂n =
n∑
t=1

r̂t ≤ 2

(√
4(1 + η)nγ̂Qn

(
b+ σν

√
2(γ̂Ln + 1 + log(1/δ))

)
+

n∑
t=1

ρt

)

∈ O

(
b

√
nγ̂Qn +

√
nγ̂Qn (γ̂Ln + log(1/δ)) +

n∑
t=1

ρt

) (6.74)

with probability at least 1− δ, which concludes the proof. �

6.6 Experiments

This section presents experiments analysing the performance of uGP-UCB and IGP-UCB (adapted to

input noise via Theorem 6.5) empirically. Comparisons with the unscented expected improvement (UEI)

method, proposed in Nogueira et al. (2016), are also presented. The purpose of these experiments is to

both verify the theoretical results in the previous section and to also test each BO approach in situations

that do not meet their theoretical assumptions, including a case involving a robotic simulation.

6.6.1 Theory check

To verify the theoretical results, this experiment tested IGP-UCB and uGP-UCB under ideal settings

where the theoretical assumptions are met. The objective function was set as f =
∑q

i=1 αik(·,xi) ∈ Hk,

where {xi}ni=1 are uniformly sampled from [0, 1]2 ⊂ R2 and α ∼ N(0,K) with [K]ij = k(xi,xj),

i, j ∈ {1, . . . , q}, and q = 20. The kernel was the squared exponential with length-scale set to 0.1.
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The search space for IGP-UCB was set as a uniformly sampled subset of the unit box, i.e. S ⊂ [0, 1]2

with |S| = 100. For uGP-UCB, query distributions were picked from a finite set R = {N(x,Σ) | x ∈

S} ⊂ P , where Σ = σ2EI with σE = 0.1, and P̂x = PEx for this experiment. Having the search space

for both algorithms configured as finite sets enables fast recursive updates for the GP predictions (see

Chowdhury and Gopalan, 2017, App. F), so that tests could be run for as many iterations as needed to

verify asymptotic performance. The UCB parameters are set as δ = 0.1, and the RKHS norm bound

b was directly computed as ‖f‖k =
√
αTKα. The observation noise parameter σF was computed

according to Lemma 6.6 and white Gaussian noise ζt ∼ N(0, σ2ζ ) was added to each observation. The

location estimates PLt were provided simply using PLt = PExt for these tests.

The theoretical upper bound on the expected regret was computed from Theorem 6.13’s result:

∀x ∈ S, |EPEx [f ]− µ̂t−1(PEx )| ≤ βtσ̂t−1(PEx ) , ∀t ≥ 1 , (6.75)

which should hold with probability greater than 1 − δ for βt set according to Theorem 6.8. Then, with

the same probability, we should have that:

∀t ≥ 1, r̂t = max
x∈S

EPEx [f ]− EPExt [f ] ≤ 2βtσ̂t−1(PExt) , (6.76)

and consequently,

R̂n =
n∑
t=1

r̂t ≤ 2
n∑
t=1

βtσ̂t−1(PExt) . (6.77)

An analogue result can be derived for IGP-UCB by replacing the GP predictive mean and variance.

Results evaluating the expected regret and the upper bound above are presented in Figure 6.1. As the plot

shows, the regret of each algorithm stays within the theoretical bounds with a gap of almost an order of

magnitude. It’s also noticeable that uGP-UCB’s regret is lower both in theory and in practice. The plot

also shows that each algorithm’s mean regret tends to zero with a well-defined downward slope. Recall

that the mean expected regret is an upper bound on the minimum expected regret up to a given iteration,

as mint≤n r̂t ≤ R̂n/n, so that a vanishing mean expected regret R̂n/n → 0 as n → ∞ indicates that

the algorithm eventually reaches the global optimum.

6.6.2 Objective functions in the same RKHS

In this experiment, for each trial a different objective function was generated by uniformly sampling a

set of 30 weights αi and support points xi for the kernels, with f =
∑q

i=1 αik(·,xi) ∈ Hk. The search
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FIGURE 6.1: Theory check: The plot shows the mean expected regret and its theoret-
ical upper bound for each UCB algorithm. Results were averaged over 10 trials, each
with randomly generated input and output noise.

(A) 2D, auto (B) 2D, fixed

FIGURE 6.2: Mean expected regret for IGP-UCB, UEI, and uGP-UCB in the optimi-
sation of functions in the same RKHS: in (a) the UCB confidence-bound parameter βt
was set according to the theoretical results, while in (b), it was fixed at βt = 3 for all
t. The results were averaged over 20 trials, and the shaded areas correspond to one
standard deviation.

space was set to the unit box S = [0, 1]2 ⊂ R2. To verify the theoretical results for the UCB algorithms,

the parameters are set as δ = 0.4, and b was directly computed as ‖f‖k. The querying execution

noise on PEx was generated from i.i.d from N(0, σ2xI) with σx = 0.1. The output noise parameters for

the GP model were computed according to Proposition 6.6, but each method was configured assuming

an underestimated execution noise distribution N(0, σ̂2xI), with σ̂x = 1
2σx. Noise on the localisation

estimates PLt was also set at half the standard deviation of the execution noise. Kernel length-scales

were set isotropic to 0.1. The maximum information gain was set according to the results in Srinivas

et al. (2012).
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(A) Noise mis-specification (B) Parameter sentitivity

FIGURE 6.3: Robustness: (a) presents how each algorithm’s performance is affected
by mis-specification of the execution noise variance for the experiment with functions
in the same RKHS, while (b) presents how the UCB methods performance varies under
different settings for βt in the case of the objective function in a different RKHS. In
both cases, the mean expected regret shown is computed at the end of 200 iterations and
averaged over 10 trials.

Figure 6.2a presents performance results, in terms of mean expected regret, obtained by uGP-UCB

under the assumptions of Theorem 6.8, IGP-UCB with parameters adapted according to Theorem 6.5’s

settings, and UEI. As the results show, in this setup, uGP-UCB is able to outperform IGP-UCB, if

following the setup in Theorem 6.8. UEI is able to significantly outperform both UCB methods, though

with a growing mean expected regret. This fact indicates that UEI’s cumulative expected regret R̂n is

not growing sub-linearly with the number of iterations n. One of the main reasons for the large regret

of the UCB methods in this experiment is that cumulative regret bounds are valid up to a constant

factor, due to the use of the O notation, and their focus is on guaranteeing asymptotic convergence, i.e.

lim
n→∞

R̂n/n = 0, as most theoretical results in the UCB literature (Srinivas et al., 2012; Chowdhury

and Gopalan, 2017). Thus, the method might need many more iterations to show a vanishing regret, at

prohibitive computational costs due to the GP’s O(n3) update complexity (Rasmussen and Williams,

2006). In Chowdhury and Gopalan (2017) and Section 6.6.1, results were shown for n in the order of

104 iterations, which was possible due to low-cost updates for the GP predictive equations over discrete

search spaces (see Chowdhury and Gopalan, 2017, App. F). In this experiment, the method is evaluated

over a continuous search space, instead, making it unable to apply the same approximations.

As Figure 6.2b presents, for a fixed βt, UCB-based methods can quickly outperform UEI. For the latter,

the expected improvement over the best objective function value observed so far is computed over the

GP model by applying the unscented transform to the standard EI estimate. This transformed estimate
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FIGURE 6.4: Performance results for objective function in different RKHS: (a)
presents the objective function and (b) the mean expected regret for each algorithm.
Results were averaged over 10 trials.

corresponds to the expected value of the EI under the input-noise distribution, which in this experi-

ment is under-estimated with a quarter of the true variance. As Figure 6.3a presents, UCB methods are

more robust to mis-specification of the execution noise having smaller variation in performance, being

actually favoured by assuming less execution noise than the true amount. This behaviour can be ex-

plained by considering that, assuming less execution noise, GP-UCB’s estimated upper bound on the

objective function value is higher than needed, but still a valid upper bound, maintaining the algorithm’s

assumptions.

6.6.3 Objective function in different RKHS

To verify uGP-UCB’s performance under wrong kernel assumptions, the next experiment performed

tests with an objective function in a different RKHS. This function, shown in Figure 6.4a also appeared

in experiments in Nogueira et al. (2016). Figure 6.4b presents performance results for fixed βt = 3.

Figure 6.3b evaluates each algorithm’s sensitivity to the choice of βt as a way to asses the robustness

of the methods when theoretical assumptions are not met. Input noise was set with σx = 0.01. As

seen, both the proposed uGP-UCB and IGP-UCB can outperform the unscented BO approach UEI. In

addition, one can see that uGP-UCB shows consistently better performance than that of IGP-UCB across

varying settings for βt.
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(A) Potassium
concentration

(B) Execution error (C) Performance

FIGURE 6.5: Robotic exploration experiment: (a) presents the Broom’s barn data as
distributed over the search space; (b) presents a typical execution error distribution as
observed from one of the runs in the experiment; and (c) shows the performance of each
BO approach, averaged over 4 runs.

6.6.4 Robotic exploration problem

This section presents results obtained in a simulated robotic exploration problem. In this experiment,

a robot is set to explore an environmental process by measuring the concentration of potassium in the

soil of a farm. The underlying process is based on the Broom’s Barn dataset 6, consisting of the log-

concentration of potassium in the soil of an experimental agricultural area. This data was spread over a

36 by 62 metres search space as shown in Figure 6.5a. The robot is allowed to perform up to 30 measure-

ments on different locations. Each BO method sequentially selects the locations where the robot should

make a measurement in the usual online decision making process, based on the observations it gets.

The robot was simulated using the OpenRobots’ Morse simulator 7. In this scenario, execution noise is

not following a stationary distribution due to the dynamic constraints of the robot, the imperfections in

motion control etc. Figure 6.5b presents a typical execution noise distribution, when marginalised over

different starting and goal locations from a given run of the experiment. As seen in the figure, the noise

distribution is not Gaussian, but it’s concentrated on average 3 metres away from the target location,

since this was the threshold given to the robot’s path-following control as the minimum distance to a

target location. The noise around the ring formed by the distribution is a consequence of localisation

uncertainty and imperfections on the robot’s motion control. The hyper-parameters for each GP were

learnt online via log-marginal likelihood maximisation, after each sample. βt is set at a fixed value for

6Dataset available at http://www.kriging.com/datasets/
7Morse: https://www.openrobots.org/morse

http://www.kriging.com/datasets/
https://www.openrobots.org/morse
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this experiment, again with βt = 3. Figure 6.5c presents the performance of each algorithm in terms

of regret. The plots show that uGP-UCB is able to significantly outperform UEI, while performing still

better than IGP-UCB in the long run. This result confirms that it is possible to obtain better performance

in practical BO problems by taking advantage of distribution estimates and by directly considering exe-

cution uncertainty.

6.7 Summary

This chapter proposed a novel approach to optimise functions where both the samples of the function val-

ues as well as the location at which the function is sampled are stochastic. Theoretical guarantees were

provided on the optimality of the proposed uGP-UCB algorithm and the standard IGP-UCB method,

when adapted to the noisy-inputs settings. Experiments have shown competitive performance when

compared to state-of-the-art methods (Nogueira et al., 2016), while at the same time providing the first

theoretical guarantees for this kind of setup. For future work, it would be worth investigating learning

techniques for the approximate querying distribution P̂x and better bounds for the uncertain-inputs GP

model information gain, possibly by means of information geometry (Ay et al., 2017) techniques.



CHAPTER 7

Conclusions

This thesis addressed the problem of planning under uncertainty. Bayesian optimisation was applied

as a general framework to select actions to optimise partially-observable objective functions. Different

methods were developed tackling issues that arise in real-world problems which uncertainty affects in

different ways. This chapter summarises the thesis’ contributions and presents future research directions.

7.1 Contributions

The following reviews the contributions of this thesis organised per topic.

7.1.1 Trajectory optimisation

Chapter 3 presented a method to optimise trajectories over a terrain model that is learnt online. The opti-

misation goal was to minimise the required energy expenditure for a robot to travel from a given starting

point to a final location. This method employed Gaussian process regression to learn a mapping from

individual robot configurations to the power demanded by moving over the terrain at that configuration.

An acquisition function taking integrals over the GP estimates was proposed as a method to evaluate

candidate paths. Experiments showed that the BO approach outperforms other optimisation methods

and is also applicable to practical situations where a physical robot needs to learn how to efficiently

traverse unforeseen terrain.

7.1.2 Search in high-dimensional parameter spaces

Chapter 4 addressed problems involving a large number of parameters to optimise. Classic BO algo-

rithms traditionally degrade in performance as the dimensionality of the search space increases. The

method proposed in Chapter 4 addressed this issue by combining BO with coordinate-descent strategies,
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which allow simplifying the optimisation problem. In addition, the method also took advantage of the

fact that solutions to heavily-constrained optimisation problems are usually close to each other. In this

case, starting the optimisation from a known valid solution, instead of at a random point, helps the algo-

rithm to reduce the number of iterations needed to find a promising solution. The proposed BO method

was applied to optimise control policies for a simulated race car. Experiments demonstrated that the

proposed approach is able to maintain performance across increasing search space dimensionality.

7.1.3 Optimisation under uncertain inputs

The last two chapters (5 and 6) addressed problems where uncertainty affects the estimates of where

a sample was collected. This uncertainty affects conventional models learnt with BO in a way that is

not usually addressed. Chapter 5 then proposed using GP models that take input noise into account as

priors for BO. These models can take probability distributions as representations of an uncertain input,

instead of simply using point estimates or assuming that the query was performed exactly where it was

specified to be. Chapter 5 was concerned with an application where a robot needs to learn a terrain

roughness model as it drives while keeping itself safe by avoiding areas that cause excessive vibration to

its chassis. The next chapter generalised this idea to a general optimisation setup and provided theoretical

guarantees for such a BO method. Experiments in both chapters also demonstrated the performance of

the proposed BO methods when compared to alternatives in simulation and with a physical robot.

7.2 Future work

This section presents a few areas for future work where the methods in this thesis can contribute to.

7.2.1 Functional optimisation

Both Chapter 3 and Chapter 4 can fit into the general problem of functional optimisation (Devolder

et al., 2010; Vien and Toussaint, 2018). A functional is basically a function of a function. An integral,

for example, is a functional, since it takes as input a function and returns a scalar corresponding to

the area under the function’s graph. Both the energy cost of a path and the reward proportioned by

a control policy are functional objectives. Recently proposed methods for Bayesian optimisation in

infinite-dimensional spaces (Kasim and Norreys, 2016; Vien and Toussaint, 2018) can be combined

with the techniques in chapters 3 and 4 to yield new methods for functional optimisation.
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7.2.2 Partially observable Markov decision processes

Chapters 5 and 6 addressed problems where both the execution of a query and the estimation of the

true query location are uncertain. These problems are prevalent in partially-observable Markov decision

process (POMDP) frameworks (Mcallister and Rasmussen, 2017). Although BO methods have been

previously applied to solve POMDP problems (Marchant and Ramos, 2014; Morere et al., 2016), such

methods still use point estimates in observations, while marginalising over state distributions. There-

fore, the methodology presented in Chapter 6, which can operate directly on the space of probability

distributions, may lead to new possibilities for BO methods to solve POMDP problems.

7.2.3 Policy search

The CDBO method in Chapter 4 can be applied to other tasks where policies are parameterised by a

large number of parameters. An issue that happens in such problems is that the solution space might

be heavily constrained presenting sharp transitions and a non-smooth reward surface. CDBO was able

to perform well in such problems by using initial guesses in the valid region of the parameter space.

However, combining CDBO with methods that can learn the constrained region of the search space

(Achiam et al., 2017) and adapt to the irregularities of the reward function (Martinez-Cantin, 2017)

should allow for even more efficient optimisation schemes for control policies.

7.2.4 Non-stationary priors

Non-stationary covariance functions allow Gaussian process models to learn functions whose level of

smoothness varies across the domain (Rasmussen and Williams, 2006). In the BO case, these have been

applied to learn objective functions presenting sharp transitions, as in the policy-search cases mentioned

above, or modelling complex physical simulations (Martinez-Cantin, 2017). The type of covariance

function applied in Chapter 6 presents non-stationary properties if considering maps x 7→ P̂x, where the

distribution P̂x ∈ P allows locally varying levels of smoothness. Input-warping methods, which simi-

larly allow this kind of control, have been previously combined with BO (Snoek et al., 2014) to optimise

over functions with non-stationary characteristics, though not providing strong theoretical guarantees.

Reinterpreting maps x 7→ P̂x might then allow deriving BO methods with strong theoretical guarantees

in problems involving non-stationarity.
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APPENDIX A

Proofs

This chapter presents proofs for auxiliary theoretical results in Chapter 6. The first section provides some

background with general definitions and basic lemmas applied in the proofs. The following sections then

present the proofs for each result, starting with Proposition 6.6. For reference, a notation summary is

presented in Table A.1.

TABLE A.1: Notation

R the field of real numbers, or the real line
Rd the Euclidean space of d-dimensional vectors
S BO’s search space, a subset of Rd
x a location vector, considered as an element of Rd
x̃ random location, an Rd-valued random variable
f deterministic-inputs objective function
f̂ uncertain-inputs objective function
X input domain of the objective function, often Rd
P set of all probability measures on X
P a probability measure or distribution
PLt location distribution estimated by localisation
PEx query location distribution given a target x

P̂x model for PEx used by uGP-UCB
ψP mean map of P
k a positive-definite kernel
Hk reproducing kernel Hilbert space of k

A.1 Background

DEFINITION A.1 (Bounded differences property). Let x = [x1, . . . , xd]
T and:

x′i = [x1, . . . , xi−1, x′i, xi+1, . . . , xd]
T , (A.1)
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where xi, x′i ∈ Xi ⊂ R and X = (X1 × · · · × Xd). A function f : X → R has the bounded differences

property if:

|f(x)− f(x′i)| ≤ ci, ∀i ∈ {1, . . . , d} , (A.2)

where ci are non-negative constants.

LEMMA A.2 (Corollary 4.36 in Steinwart and Christmann (2008)). Let f ∈ Hk, where k : X ×X → R

is a twice-differentiable kernel on X ⊆ Rd. Then f has bounded first-order partial derivatives, such

that for any x ∈ X : ∣∣∣∣∂f(x)

∂xi

∣∣∣∣ ≤ ‖f‖k
√
∂2k(x,x′)
∂xi∂x′i

∣∣∣
x′=x

. (A.3)

LEMMA A.3 (Theorem 5.5 in Boucheron et al. (2013)). Let x̃ ∼ N(0, I) be an Rd-valued standard

Gaussian random vector. Let f : Rd → R denote a `-Lipschitz function, i.e.:

|f(x)− f(x′)| ≤ `‖x− x′‖2, ∀x,x′ ∈ Rd . (A.4)

Then, for all λ ∈ R:

E[eλ(f(x̃)−E[f(x̃)])] ≤ e
1
2
λ2`2 . (A.5)

DEFINITION A.4 (Bounded linear operator). A linear operator L : X → Y mapping a vector space X

to another vector space Y is any operator such that, for all x, y ∈ X and a scalar α:

A1. L(x+ y) = Lx+ Ly

A2. L(αx) = αLx

If X and Y are normed vector spaces, the operator L is bounded if:

‖L‖ := sup
x∈X :‖x‖=1

‖Lx‖ <∞ , (A.6)

where ‖L‖ is called the operator norm of L.

LEMMA A.5 (Bounded linear extension (Kreyszig, 1978, Thr. 2.7-11)). Let M :W → Y be a bounded

linear operator, whereW lies in a normed vector space X , and Y is a Banach space. Then M has an

extension M :W → Y , where M is a bounded linear operator with norm ‖M‖ = ‖M‖.
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A.2 Proof of Lemma 6.1

LEMMA 6.1 (Expected function). Any f ∈ Hk is continuously mapped to a corresponding f̂ ∈ Hk̂,

which is such that:

∀P ∈ P, f̂(P ) = EP [f ]

‖f̂‖k̂ = ‖f‖k .
(6.8)

Under the additional assumption that k is characteristic, we have that the mapping f 7→ f̂ constitutes

an isometry betweenHk andHk̂ and is also invertible.

PROOF. By the definition in Equation 6.7, we have the following equivalence:

∀x,x′ ∈ X , k(x,x′) = k̂(Dx, Dx′) , (A.7)

where Dx ∈ P is the Dirac measure associated with x (see Equation 2.74). Therefore, the linear map

k(·,x) 7→ k̂(·, Dx) is bounded. As any f0 ∈ H0
k is composed of finite linear combinations of features

k(·,xi), we then have that f0 is continuously mapped to a f̂0 ∈ Hk̂, given by the equivalence:

f0 =

q∑
i=1

αik(·,xi) =

q∑
i=1

αik̂
(
D(·), Dxi

)
= f̂0

(
D(·)

)
, (A.8)

where D(·) represents the map x 7→ Dx. Given P ∈ P , we can see that:

f̂0(P ) =

q∑
i=1

αik̂ (P,Dxi) =

q∑
i=1

αi〈k(·,xi), ψP 〉k = EP [f ] . (A.9)

Furthermore, the RKHS norm of f̂0 is such that:

‖f̂0‖2
k̂

=

q∑
i=1

q∑
j=1

αiαj k̂
(
Dxi , Dxj

)
=

q∑
i=1

q∑
j=1

αiαjk(xi,xj) = ‖f0‖2k . (A.10)

Therefore, the mapping from H0
k to Hk̂ defined by f0 7→ f̂0 is bounded and isometric. Since H0

k is

dense in Hk, f0 7→ f̂0 can be continuously extended to the closure H0
k, which is the entire Hk, by the

bounded linear extension theorem (Kreyszig, 1978, Thr. 2.7-11).

Conversely, consider any f̂0 =
∑q

i=1 αik̂(·, Pi) ∈ H0
k̂
, which is the pre-Hilbert space spanned by k̂.

If k is a characteristic kernel (Sriperumbudur et al., 2011), the mean map ψ is injective, i.e. one-to-

one. Therefore, every ψP ∈ Hk is associated with a unique P ∈ P . By construction, we have that
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k̂(·, P ) = 〈ψ(·), ψP 〉k. With an injective ψ, we can then define a bounded linear map from H0
k̂

to Hk
using k̂(·, P ) 7→ ψP . The rest of the proof follows by repeating the steps applied in the first part. �

A.3 Proof of Proposition 6.6

This section presents the proof for Proposition 6.6. The result is restated below, followed by the proof.

PROPOSITION 6.6. Let f ∈ Hk and k : Rd×Rd → R be an at least twice-differentiable positive-definite

kernel with finite `2k ≥ sup
x∈Rd

sup
i∈{1,...,d}

∂2k(x,x′)
∂xi∂x′i

|x=x′ . Then, for a given P ∈ P and x̃ ∼ P , we have that

∆fP := f(x̃)− EP [f(x̃)] is a σF -sub-Gaussian random variable in the following cases:

(1) σF = ‖f‖k`ktr(Σ)1/2, if P is Gaussian with covariance matrix Σ;

(2) σF = 1
2‖f‖k`k

√∑d
i=1 σ

2
i , if P has compact support, with |x̃i − x̂i| ≤ 1

2σi, i ∈ {1, . . . , d},

where x̃ ∼ P and x̂ = E[x̃].

PROOF. The following proof is split in two parts. The derivation firstly covers the case where

the inputs follow a Gaussian distribution and then the case for arbitrary probability distributions with

compact support.

Gaussian inputs (1): In the case of Gaussian inputs, Proposition 6.6 is a direct consequence of

Lemma A.3 when applied to functions f ∈ Hk. Notice that, by the definition of Hk, any f in it is

continuously differentiable and Lipschitz continuous according to Lemma A.2. All we have to do is to

generalise the inequality in Equation A.5 for the case of general Gaussian random vectors x̃ ∼ N(x̂,Σ).

If x̃s is a standard Gaussian random vector, x̃ = x̂ + Ax̃s, where Σ = AAT, due to the translational

and rotational invariance of Gaussian random vectors. We can define a function g, such that:

g(x̃s) = f(x̂ + Ax̃s) = f(x̃) . (A.11)

Since f is Lipschitz continuous, g also is, for some Lipschitz constant `g. Then we can apply Lemma A.3

to g, which yields:

E[eλ(g(x̃
s)−E[g(x̃s)])] ≤ e

1
2
λ2`2g . (A.12)

In addition, by definition (Equation A.11), g(x̃s) and f(x̃) follow the same distribution, so that E[f(x̃)] =

E[g(x̃s)]. As a result, ∆fP = f(x̃)− E[f(x̃)] is `g-sub-Gaussian, according to Definition 6.2.
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Now `g is any constant uniformly upper-bounding the Euclidean norm of g’s gradient, and ‖∇g‖2=

‖AT∇f‖2. Without loss of generality, let’s assume that Σ is a matrix of diagonal entries σ2i , 1 ≤ i ≤ d.

Then we have that:

‖∇g‖22 = ‖AT∇f‖22

= ∇fTAAT∇f

= ∇fTΣ∇f

=

d∑
i=1

σ2i

∣∣∣∣ ∂f∂xi
∣∣∣∣2 ≤ `2f tr(Σ) ,

(A.13)

where `f = ‖f‖k`k. Therefore, the inequality in Equation A.12 holds with `g = `f
√

(tr(Σ)).

For a non-diagonal Σ, by spectral decomposition, we have that Σ = VΛVT, where Λ is a matrix whose

diagonal is composed of Σ’s eigenvalues and VVT = I. Observe that the result in Equation A.13 would

also hold for a zero-mean Gaussian random vector x̃v with covariance matrix Λ. Then we could define

h(x̃v) = f(x̂ + Vx̃v) and follow similar steps to the ones we took for g. However, f and h, as defined,

have the same Lipschitz constant, since:

‖Vx−VX′‖22 = (x− x′)TVTV(x− x′) =‖x− x′‖22 , (A.14)

where we applied VTV = VVT = I. In addition, as Σ is positive definite, tr(Σ) = tr(Λ).

Therefore, the same result in Equation A.13 holds for general Σ and x̂, which can also be seen as

a consequence of the translational and rotational invariance of Gaussian random vectors. Making

σF = `g =‖f‖k`ktr(Σ)1/2 concludes the first part of the proof.

Distributions with compact support (2). By Lemma A.2, we can observe that f ∈ Hk(X ) is Lips-

chitz continuous with respect to the 1-norm on Rd, in particular:

|f(x)− f(x′)| ≤ ‖f‖k`k‖x− x′‖1, ∀x,x′ ∈ Rd , (A.15)

where `k ≥ 0 is any constant such that `2k ≥ sup
x∈X

sup
i∈[d]

∂2k(x,x′)
∂xi∂x′i

|x=x′ . Therefore, according to Defini-

tion A.1, f satisfies the bounded differences property for any x in the support of P with ci = ‖f‖k`kσi.

Applying McDiarmid’s inequality (McDiarmid, 1989), we have that:

P {|f(x̃)− EP (f)| ≥ t} ≤ 2 exp

(
− 2t2

‖f‖2k`2k
∑d

i=1 σ
2
i

)
. (A.16)
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As a result, ∆fP is σF -sub-Gaussian with σF = 1
2‖f‖k`k

√∑d
i=1 σ

2
i , according to Definition 6.2 and

Lemma 2.2 in Boucheron et al. (2013). This concludes the proof. �

A.4 Proof of Proposition 6.7

PROPOSITION 6.7. Let k be a bounded, measurable, translation-invariant kernel on (X ,X), where X

is a topological vector space, and X is its Borel σ-algebra. Assume that the mapping x 7→ Px ∈ P(X )

is such that, for any x ∈ S ⊂ X , x̃ ∼ Px is decomposable as x̃ = x + ε, where ε is independent

and identically distributed, i.e. ε ∼ PE ∈ P(X ). Then we have that, for any f ∈ Hk, the mapping

x 7→ EPx [f ] defines a function g ∈ Hk(S), and ‖g‖k ≤ ‖f‖k.

PROOF. To prove this result, we will consider properties of the inner product in Hk when k is

translation invariant. These properties essentially allow us to transfer the noise in the evaluation of f

to f itself and then represent g as the expectation of this noisy version of f . Similar to the proof of

Lemma 6.1, we start by defining an operator onH0
k and then extend it toHk.

To develop the proof, we need to represent f in terms of the kernel k. Let f =
∑q

i=1 αik(·,xi) ∈ H0
k,

whereH0
k is the pre-Hilbert space spanned by the kernel (see Section 2.4.2). Considering the evaluation

of the expected value of f , we have that:

∀x ∈ S, EPx [f ] = Eε∼PE [f(x + ε)] = Eε∼PE

[
q∑
i=1

αik(x + ε,xi)

]
. (A.17)

For a fixed ε, we have that k(x′,x+ε) = k(x′−ε,x), ∀x,x′ ∈ X , by translation invariance. Applying

this property, we obtain:

f(x + ε) =

q∑
i=1

αik(x + ε,xi) =

q∑
i=1

αik(x,xi − ε)

= 〈
q∑
i=1

αik(·,xi − ε) , k(·,x)〉k

= fε(x)

(A.18)
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where fε :=
∑q

i=1 αik(·,xi − ε) is equivalent to a version of f with inputs shifted by ε. As the shift ε

is the same for all xi, i ∈ {1, . . . , q}, the norm is unaffected, as:

‖fε‖2k = 〈fε, fε〉k =

q∑
i=1

q∑
j=1

αiαjk(xi − ε,xj − ε)

=

q∑
i=1

q∑
j=1

αiαjk(xi,xj)

= 〈f, f〉k = ‖f‖2k ,

(A.19)

where the second equality follows by translational invariance. Defining the mapping f 7→ fε as an

operator from H0
k to Hk, one can easily show that this operator is also linear. Applying the bounded

linear extension theorem (Kreyszig, 1978, Thr. 2.7-11), then we have that f 7→ fε is actually well

defined over the entireH0
k = Hk.

Now we can return to the derivation in Equation A.17. Since k is measurable, we have that ε 7→ fε

defines a Hk-valued random variable (see Section 2.6 and Berlinet and Thomas-Agnan (2004, Ch. 4,

Sec. 2)). In addition, since ‖f‖k is finite, ε 7→ ‖fε‖k is bounded, so that expectations are well defined

(Berlinet and Thomas-Agnan, 2004, Ch. 4, Sec. 5). Applying these results to Equation A.17 yields:

∀f ∈ Hk,∀x ∈ S, EPx [f ] = Eε∼PE [fε(x)] = 〈Eε∼PE [fε], k(·,x)〉k . (A.20)

Defining g′ := Eε∼PE [fε] and restricting the domain to S, set g := g′|S ∈ Hk(S). By properties of the

Bochner integral (see Equation 2.93), which defines E[fε], we know that:

‖g′‖k = ‖E[fε]‖k ≤ E[‖fε‖k] = ‖f‖k . (A.21)

Regarding the norm of the domain-restricted function, we then have that:

‖g‖Hk(S) = inf
h∈Hk:h|S=g

‖h‖k ≤ ‖g′‖k ≤ ‖f‖k . (A.22)

The result in Proposition 6.7 immediately follows, which concludes the proof. �

A.5 Proof of Theorem 6.12

This section presents the continuation of the proof of Theorem 6.12. The first part of the proof proved

the following lemma.
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LEMMA A.6. For a fixed u : W → R and s := {si}∞i=1, si ∈ R, we have that {mu,s
t }∞t=0 is a non-

negative super-martingale with respect to the filtration {Ft}∞t=0, where:

mu,s
t := exp

(
νT
t ut,s −

σ2ν
2
‖ut,s‖22

)
, t ≥ 0 . (A.23)

Based on Lemma A.6, the derivations presented here will follow the proof of the IGP-UCB version of

Theorem 6.12 Chowdhury and Gopalan (2017, App. A), which the uGP-UCB result is based on. Besides

Theorem 6.12, the proof makes use of the following theoretical results. For the definitions, consider an

arbitrary probability space (E ,E, PE).

DEFINITION A.7 (Stopping time (Bauer, 1981, Def. 11.2.1)). A stopping time relative to a filtration

{Ft}t∈I in E is a mapping τ : E → I, where I is a partially ordered index set, such that:

{ω ∈ E | τ(ω) ≤ t} ∈ Ft, ∀t ∈ I . (A.24)

Given a stopping time τ : E → I, denote {τ ≤ t} := {ω ∈ E | τ(ω) ≤ t} for any t ∈ I. Considering a

filtration {Ft}t∈I in E , define:

Fτ := {A ∈ 2E | A ∩ {τ ≤ t} ∈ Ft, ∀t ∈ I} . (A.25)

From this definition, Fτ constitutes a σ-algebra in E (Bauer, 1981, p. 346). Namely, Fτ is called the

σ-algebra of the τ -past events, i.e. the events up to time τ . Then, given a family of random variables

{mt}t∈I , one can define the map mτ : ω 7→ mτ(ω)(ω), ω ∈ E . We have that mτ defines a random

variable if I is a countable set, such as N, by the following lemma.

LEMMA A.8 (Bauer (1981, Lem. 11.2.3)). Given a stopping time τ : E → I on (E ,E, PE), the function

mτ : ω 7→ mτ(ω)(ω) is Fτ -measurable if the set of all values t′ of τ with t′ ≤ t is countable for every

t ∈ I.

Now we can define a stopped version of a super-martingale, which by itself is also a super-martingale,

according to the next result.

LEMMA A.9. Let τ : E → N be a stopping time relative to the filtration {Ft}t∈N. If {mt}t∈N is a super-

martingale relative to the filtration {Ft}t∈N in E , we have that {mmin{τ,t}}t∈N is a super-martingale.

PROOF. From the definition a super-martingale (see Section 2.6.4), all we need to do to prove that

{mmin{τ,t}}t∈N is a super-martingale is to verify that E[|mmin{τ,t}|] <∞ and that E[mmin{τ,t}|Ft−1] ≤
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mmin{τ,t−1} (a.s.), for all t ∈ N. Firstly, we have that:

∀t ∈ N, E[|mmin{τ,t}|] ≤
t∑
i=1

E[|mi|] <∞ . (A.26)

Secondly, using indicator functions:

1A(ω) =

1, ω ∈ A

0, ω /∈ A ,
(A.27)

where A ∈ E, ω ∈ E , we have that:

mmin{τ,t} = mt1{τ≥t} +
t−1∑
i=1

mi1{τ=i} (A.28)

for any t ∈ N. Notice that, {τ ≥ t} = {τ > t− 1} = E\{τ ≤ t− 1} ∈ Ft−1 by Definition A.7, so that

1{τ≥t} is Ft−1-measurable. Now taking the conditional expectation, we obtain:

E[mmin{τ,t}|Ft−1] = 1{τ≥t}E[mt|Ft−1] +
t−1∑
i=1

mi1{τ=i} . (A.29)

Using Equation A.28 for mmin{τ,t−1} and taking the difference with the last result yields:

∀t > 1, mmin{τ,t−1} − E[mmin{τ,t}|Ft−1] = 1{τ≥t}(mt−1 − E[mt|Ft−1]) ≥ 0 (a.s.) , (A.30)

since E[mt|Ft−1] ≤ mt−1 (a.s.). The latter implies that E[mmin{τ,t}|Ft−1] ≤ mmin{τ,t−1} (a.s.), for all

t ∈ N. The result in Lemma A.9 then follows. �

Lastly, the proof of Theorem 6.12 will also make use of the following two lemmas:

LEMMA A.10 (Fatou’s lemma (Bauer, 1981, Lem. 2.7.1)). For every sequence {mt}t∈N of non-negative

E-measurable functions: ∫
lim inf
t→∞

mt dPE ≤ lim inf
t→∞

∫
mt dPE . (A.31)

LEMMA A.11 (Super-martingale convergence (Bauer, 1981, Thr. 11.4.1)). Every super-martingale

{mt}t∈N relative to {Ft}t∈N which satisfies the condition:

sup
t∈N

E[|mt|] <∞ (A.32)

converges almost surely to an integrable random variable m∞.
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LEMMA A.12 (Markov’s inequality). Given a real-valued random variable ξ and a real number α > 0,

we have:

P {|ξ| ≥ α} ≤ E[|ξ|]
α

, (A.33)

which is known as Markov’s inequality (Boucheron et al., 2013).

Now we are ready to continue with the proof of Theorem 6.12. The result is restated below.

THEOREM 6.12. Consider an arbitrary domain W and a σ-algebra W on it. Let {ξt}∞t=1 be a W-

valued discrete-time stochastic process adapted to the filtration {Ft}∞t=0. Let {νt}∞t=1 be a real-valued

stochastic process such that, for some σν ≥ 0 and for all t ≥ 1, νt is (a) Ft-measurable, and (b) σν-sub-

Gaussian conditionally on Ft−1. Let k̂ : W ×W → R be a W-measurable, bounded positive-definite

kernel, and let 0 < δ ≤ 1. For a given η > 0, with probability at least 1 − δ, the following holds

simultaneously for all t ≥ 0:

‖νt‖2((K̂t+ηI)−1+I)−1 ≤ 2σ2ν log

√
|(1 + η)I + K̂t|

δ
, (6.39)

where ‖x‖2M := xTMx, for a positive-definite matrix M. We also have that, if K̂t is almost-surely

positive-definite for all t ≥ 1, the above result holds for η = 0.

PROOF OF THEOREM 6.12 (CONT.) Except for a few adaptations, the following steps of the proof

follow almost verbatim with the proof in the supplementary material of Chowdhury and Gopalan (2017,

App. A). Considering Lemma A.6, observe that:

∀t ≥ 0, E[mu,s
t ] ≤ E[mu,s

t−1] ≤ · · · ≤ E[mu,s
0 ] = 1 . (A.34)

Let τ be a stopping time relative to the filtration {Ft}∞t=0. By Lemma A.11, we have that mu,s
∞ =

limt→∞m
u,s
t almost surely exists. And by Lemma A.8, mu,s

τ is a well-defined random variable. Con-

sider now a stopped version of {mu,s
t }∞t=0, denoted as qu,st := mu,s

min{τ,t}, t ≥ 0, which is also a non-

negative super-martingale by Lemma A.9. By Fatou’s lemma (Lemma A.10), we then have that:

E[mu,s
τ ] = E

[
lim
t→∞

qu,st

]
= E

[
lim inf
t→∞

qu,st

]
≤ lim inf

t→∞
E[qu,st ]

= lim inf
t→∞

E
[
mu,s

min{τ,t}

]
≤ 1 .

(A.35)
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The next step in the proof is to consider a super-martingale construction using a random noise se-

quence and a random function drawn from the GP prior, instead of s and u, respectively. Let F∞ :=

A (
⋃∞
t=0 Ft), and let s̃ := {s̃t}∞t=1 be a sequence of i.i.d. zero-mean Gaussian random variables with

variance η independent of F∞. Recall that a Gaussian process GP(0, k̂), with k̂ :W×W → R, defines

a distribution over the function space RW , which is the vector space of all functions mappingW to R.

Let ũ denote a random function distributed according to GP(0, k̂) and independent of both F∞ and s̃.

Define mt := E[mũ,s̃
t | F∞], t ≥ 0. Notice that, for all t ≥ 0, ξt and νt are F∞-measurable. For

any realisation (u, s) of (ũ, s̃), we also have that {mu,s
t }∞t=0 is a super-martingale adapted to {Ft}∞t=0

by Lemma A.6. It is then easy to see that {mt}∞t=0 is also a non-negative super-martingale relative to

{Ft}∞t=0. Again by Lemma A.11, we have that m∞ = limt→∞mt almost surely exists. Then we can

write:

E[mt] = E
[
mũ,s̃
t

]
= E

[
E
[
mũ,s̃
t

∣∣∣ ũ, s̃]] ≤ E[1] , ∀t ≥ 0 (A.36)

Following an argument similar to Equation A.35 also leads to E[mτ ] ≤ 1 for any stopping time τ . For

the next steps, without loss of generality, let us assume σν = 1, which is always achievable through

appropriate scaling1. Computing mt, we have:

mt = E
[
exp

(
νT
t (ũt + s̃t)−

1

2
‖ũt + s̃t‖22

) ∣∣∣∣ F∞]
=

∫
Rt

∫
Rt

exp

(
νT
t (ut + st)−

1

2
‖ut + st‖22

)
dN(ut; 0, K̂t) dN(st; 0, ηI)

=

∫
Rt

exp

(
νT
t λ−

1

2
‖λ‖22

)
p(λ; 0, K̂t + ηI) dλ ,

(A.37)

where the second equality comes from the GP, for ũt = [ũ(ξ1), . . . , ũ(ξt)]
T ∼ N(0, K̂t). For a given

positive-definite matrix Σ, the third equality uses dN(x; 0,Σ) = p(x; 0,Σ) dx, where p(x; 0,Σ) is

the probability density function (with respect to the Lebesgue measure) of the corresponding Gaussian

distribution. Thus, we have:

mt =
1√

(2π)t|K̂t + ηI|

∫
Rt

exp

(
νT
t λ−

1

2
‖λ‖22 −

1

2
‖λ‖2

(K̂t+ηI)−1

)
dλ

=
exp

(
‖νt‖22

2

)
√

(2π)t|K̂t + ηI|

∫
Rt

exp

(
−1

2
‖λ− νt‖22 −

1

2
‖λ‖2

(K̂t+ηI)−1

)
dλ .

(A.38)

1For example, if yt = f̂(ξt)+νt, let y′t := cyt, c > 0. Then y′t is such that y′t = f̂ ′(ξt)+ν
′
t, where ν′t is cσν -sub-Gaussian

and ‖f̂ ′‖k̂ = c‖f̂‖k̂
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Given two positive-definite matrices P and N with the same dimensionality, we have:

‖x− a‖2P + ‖x‖2Q = ‖x− (P + Q)−1Pa‖2P+Q + ‖a‖2P − ‖Pa‖2(P+Q)−1 . (A.39)

Applying this last equation to Equation A.38, we obtain:

‖λ− νt‖2I + ‖λ‖2
(K̂t+ηI)−1 =‖λ− (I + (K̂t + ηI)−1)−1Iνt‖I+(K̂t+ηI)−1

+ ‖νt‖2I − ‖Iνt‖2(I+(K̂t+ηI)−1)−1 ,
(A.40)

which yields:

mt =
1√

(2π)t|K̂t + ηI|
exp

(
1

2
‖νt‖2(I+(K̂t+ηI)−1)−1

)

×
∫
Rt

exp

(
−1

2

∥∥∥λ− (I + (K̂t + ηI)−1)−1νt
∥∥∥2

I+(K̂t+ηI)−1

)
dλ

=
1√

|K̂t + ηI||(K̂t + ηI)−1 + I|
exp

(
1

2
‖νt‖2(I+(K̂t+ηI)−1)−1

)

=
1√

|I + K̂t + ηI|
exp

(
1

2
‖νt‖2(I+(K̂t+ηI)−1)−1

)
,

(A.41)

where the second equality follows from:∫
Rt

exp

(
−1

2
(x− a)TA(x− a)

)
dx =

∫
Rt

exp

(
−1

2
‖x− a‖2A

)
dx =

√
(2π)t

|A|
, (A.42)

for a positive-definite matrix A ∈ Rt×t.

Done with the algebraic manipulations, let’s turn our attention back to the super-martingale {mt}∞t=0

at a given stopping time τ . Considering the result in Equation A.41, we can use Markov’s inequality

(Lemma A.12) to derive concentration bounds on the norm of the noise vector at the stopping time τ .

As E[mτ ] ≤ 1, for any δ ∈ (0, 1), we have:

P
{
‖ντ‖2(I+(K̂τ+ηI)−1)−1 > 2 log

(√
|(1 + η)I + K̂τ |/δ

)}
= P {mτ > 1/δ} < δE[mτ ] ≤ δ ,

(A.43)

which follows by applying Lemma A.12 and noticing that P {mτ > 1/δ} = P {log(mτ ) > log(1/δ)},

as log is a monotonic function.

Now we can derive a specific stopping time τ : E → N ∪ {0,∞} to indicate the time when ντ violates

the bound in Equation A.43. Consider the abstract probability space (E ,E, PE) where all the random



A.5 PROOF OF THEOREM 6.12 162

variables in Theorem 6.12 are defined. Following the same stopping time construction as in Chowdhury

and Gopalan (2017), for each t ≥ 0, define the bad event:

Bt(δ) =

{
ω ∈ E

∣∣∣∣ ‖νt‖2(I+(K̂t+ηI)−1)−1 > 2 log

(√
|(1 + η)I + K̂t|/δ

)}
, (A.44)

so that:

PE

⋃
t≥0
Bt(δ)

 = P
{
∃t ≥ 0 : ‖νt‖2(I+(K̂t+ηI)−1)−1 > 2 log

(√
|(1 + η)I + K̂t|/δ

)}
. (A.45)

Bounding this last probability by δ, the opposite event, which is that the norm of νt stays within the

proposed bound for all t ≥ 0, will have probability at least 1− δ, as stated by Theorem 6.12.

Let τδ be the time when the first Bt(δ) happens, i.e. τδ(ω) := min{t ≥ 0 | ω ∈ Bt(δ)}, with the

convention that min{∅} := ∞. By the measurability requirements in Theorem 6.12’s statement, every

random variable defining a set Bt(δ) in Equation A.44 is Ft-measurable2, so that Bt ∈ Ft, ∀t ≥ 0. Then

τδ is a stopping time according to Definition A.7, as:

∀t ≥ 0, {τδ ≤ t} =

t⋃
i=0

Bi(δ) ∈ Ft , (A.46)

and {τδ ≤ ∞} = E , which is in any σ-algebra, including F∞. Finally, we obtain:

PE

⋃
t≥0
Bt(δ)

 = P {τδ <∞}

= P
{
‖ντδ‖

2
(I+(K̂τδ

+ηI)−1)−1 > 2 log

(√
|(1 + η)I + K̂τδ |/δ

)
, τδ <∞

}
≤ P

{
‖ντδ‖

2
(I+(K̂τδ

+ηI)−1)−1 > 2 log

(√
|(1 + η)I + K̂τδ |/δ

)}
≤ δ

(A.47)

by Equation A.43. When K̂t is guaranteed to be a positive-definite matrix for all t ≥ 1, repeating the first

part of the proof with η = 0 leads to the conclusion in Theorem 6.12 for η = 0. Joining Equation A.47

with Equation A.45 yields the result in Theorem 6.12, which concludes the proof. �

2Recall that, for being a filtration, Ft ⊃ Ft−1 ⊃ · · · ⊃ F0. Then {νi}ti=1 are Ft-(B1-)measurable, and {ξi}∞i=1 are Ft-
W-measurable. The kernel k̂ is W-(B1-)measurable. The remaining variables are continuous mappings between Euclidean
spaces, which are Borel-measurable (see Section 2.6). Therefore, the entire composition is Ft-measurable.
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A.6 Proof of Proposition 6.9

This section presents the derivation of a proof for Proposition 6.9. The proof will make use of the

following background. For further details, see Bauer (1981) and Boucheron et al. (2013).

DEFINITION A.13 (Absolute continuity). A measure V on a σ-algebra X is said to be absolutely con-

tinuous relative to a measure U on X if every U -null set is also a V -null set.

Given a measure M on X, a M -null set is simply any set U ∈ X, such that M [U ] = 0.

DEFINITION A.14 (Kullback-Leibler divergence). Let P and P ′ be two probability measures on (X ,X).

The Kullback-Leibler divergence between the two measures is defined as:

DKL(P ′||P ) :=

∫
log

dP ′

dP
dP ′ , (A.48)

case P ′ is absolutely continuous relative to P , or∞ otherwise.

LEMMA A.15 (Pinsker’s inequality). Let P and P ′ be two probability measures on (X ,X), and let U

be a common dominating measure of P and P ′. Assume that P ′ is absolutely continuous relative to P .

Then it holds that: ∫
X

∣∣p(x)− p′(x)
∣∣ dU(x) ≤

√
1

2
DKL(P ′||P ) , (A.49)

where p = dP
dU and p′ = dP ′

dU are the respective densities of each probability measure.

Now we can proceed to the proof of Proposition 6.9, which is restated below.

PROPOSITION 6.9. Let X = Rd, f ∈ Hk and ‖f‖k ≤ b. Assume that, for any x ∈ S, the query

distribution PEx is Gaussian with mean x and positive-definite covariance ΣE . Then, using a Gaussian

model P̂x with same mean and a given constant positive-definite covariance matrix Σ̂, we have that:

∀x ∈ S,
∣∣∣EPEx [f ]− EP̂x

[f ]
∣∣∣ ≤ b

2

(
tr(Σ̂

−1
ΣE)− d+ log

|Σ̂|
|ΣE |

)1/2

.

PROOF. Proposition 6.9 refers to the approximation error between the model P̂ tx and the actual

distribution PEx in terms of difference in the expected value of a function f ∈ Hk. The result simply

follows by applying Pinsker’s inequality (Lemma A.15).
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For any t ≥ 1 and x ∈ S , let p̂tx and px denote the probability density functions of P̂ tx and PEx ,

respectively. Then we have that:

|EPEx [f ]−EP̂ tx [f ]| =
∣∣∣∣∫X f(x)(px(x′)− p̂tx(x′) dx′

∣∣∣∣ ≤ sup
x′′∈X

|f(x′′)|
∫
X
|px(x′)−p̂tx(x′)| dx′ (A.50)

Now note that, by the Cauchy-Schwartz inequality and k’s reproducing property, for any x ∈ X ,

sup
x∈X
|f(x)| = sup

x∈X
|〈f, k(·,x)〉k| ≤ sup

x∈X
‖f‖k

√
k(x,x) = ‖f‖k , (A.51)

since k(x,x) = 1 under our general regularity assumptions.

As both P̂ tx and PEx are Gaussian measures, their support is the whole X , so that they are absolutely

continuous with respect to each other. Then we can apply Pinsker’s inequality to upper bound the

remaining term in Equation A.50, which yields:∫
X
|px(x′)− p̂tx(x′)| dx′ =

∫
X
|p̂tx(x′)− px(x′)|dx′ ≤

√
1

2
DKL(PEx ||P̂ tx) . (A.52)

Plugging this result and the one in Equation A.51 back into Equation A.50 yields:

∀t ≥ 1, ∀x ∈ S, |EPEx [f ]− EP̂ tx [f ]| ≤ ‖f‖k

√
1

2
DKL(PEx ||P̂ tx) . (A.53)

The Kullback-Leibler divergence between two Gaussian distributions on Rd, PEx and P̂ tx, with covari-

ance matrices as stated and same mean vectors is given by:

DKL(PEx ||P̂ tx) =
1

2

(
tr(Σ̂

−1
ΣE)− d+ log

|Σ̂|
|ΣE |

)
, (A.54)

which comes from a known result (Rasmussen and Williams, 2006, p. 203) and the fact that:

tr(Σ̂
−1

(ΣE − Σ̂)) = tr(Σ̂
−1

ΣE − I) = tr(Σ̂
−1

ΣE)− d . (A.55)

Replacing Equation A.54 into Equation A.53 yields the result in Proposition 6.9. �

A.7 Proof of Proposition 6.10

PROPOSITION 6.10. Consider a compact set S ⊂ X , a distribution Pε ∈ P , with EPε [ε] = 0, and a set:

Pε(S) := {P ∈ P | x̃ ∼ P =⇒ x̃ = x̂ + ε, ε ∼ Pε, x̂ ∈ S} , (6.33)
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which is the set of location distributions with mean on S and affected by i.i.d. Pε-noise. Let k : X×X →

R be a continuous translation-invariant kernel, and k̂ : P ×P → R be according to Equation 6.7. Then

we have that:

∀n ≥ 1, γ̂n(Pε(S)) ≤ γn(S) . (6.34)

PROOF. Let’s consider the definitions of the information gain bounds. Given a compact set S ⊂ X ,

the maximum information gain after n iterations for a model GP(0, k) is given by:

γn(S) = max
Q⊂S:|Q|=n

1

2
log |I + λ−1KQ| , (A.56)

where KQ = [k(x,x′)]x,x′∈Q. In the case of GP(0, k̂) taking inputs from Pε, we have:

γ̂n(Pε(S)) = sup
R⊂Pε(S):|R|=n

1

2
log |I + λ−1K̂R| , (A.57)

where K̂R = [k(P, P ′)]P,P ′∈Q. Both cases have the same parameter λ > 0.

Considering the definitions above, observe that, if one can always find a Q ⊂ S that provides larger

information gain thanR, for each choice ofR ⊂ Pε(S), γn(S) will then be larger than γ̂n(Pε(S)). The

information gain is dependent on the determinants of the matrices I + λ−1KQ and I + λ−1K̂R and is

related to the positive-definiteness of both matrices.

A classic result in matrix analysis is that, if two n-by-n-matrices A and B are positive definite, and

A − B is positive semi-definite, we have that |A| ≥ |B| (see Horn and Johnson, 1985, Cor. 7.7.4).

Recall that a matrix A ∈ Rn×n is positive semi-definite if and only if ∀α ∈ Rn, αTAα ≥ 0, and

positive definite if equality only holds for α = 0. Hence, we shall prove that:

∀{Pi}ni=1 ⊂ Pε(S), ∃{xi}ni=1 ⊂ S : αT(Kn − K̂n)α ≥ 0, ∀α ∈ Rn , (A.58)

where [Kn]ij = k(xi,xj) and [K̂n]ij = k̂(Pi, Pj), i, j ∈ {1, . . . , n}. For two positive semi-definite

matrices A,B ∈ Rn×n, let A < B denote that A−B is positive semi-definite, i.e. A−B < 0. Since:

I + λ−1Kn < I + λ−1K̂n ⇐⇒ Kn − K̂n < 0 , (A.59)

the condition in Equation A.58, if satisfied, implies that |I + λ−1Kn| ≥ |I + λ−1K̂n|.

For a given {Pi}ni=1 ⊂ Pε(S), define x̃i ∼ Pi ∈ Pε(S), for each i ∈ {1, . . . , n}. By the definition of

Pε(S), we also have that each x̃i = x̂i + εi, with x̂i ∈ S and εi ∼ Pε. Recall that, for any P, P ′ ∈ P ,
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k̂(P, P ′) = 〈ψP , ψP ′〉k and ψP = E[k(·, x̃)], x̃ ∼ P . Then we can write:

∀α ∈ Rn, αTK̂nα =

n∑
i=1

n∑
i=1

αiαj k̂(Pi, Pj)

=

n∑
i=1

n∑
i=1

αiαj〈ψPi , ψPj 〉k

=

∥∥∥∥∥
n∑
i=1

αiψPi

∥∥∥∥∥
2

k

=

∥∥∥∥∥
n∑
i=1

αiE [k(·, x̂i + εi)]

∥∥∥∥∥
2

k

(A.60)

Now, as εi are i.i.d. random variables following Pε, using ε ∼ Pε, it holds that:

∀i ∈ {1, . . . , n}, E[k(·, x̂i + εi)] = E[k(·, x̂i + ε)] . (A.61)

Applying this fact, we have that:

∀α ∈ Rn, αTK̂nα =

∥∥∥∥∥E
[

n∑
i=1

αik(·, x̂i + εi)

]∥∥∥∥∥
2

k

=

∥∥∥∥∥E
[

n∑
i=1

αik(·, x̂i + ε)

]∥∥∥∥∥
2

k

≤ E

∥∥∥∥∥
n∑
i=1

αik(·, x̂i + ε)

∥∥∥∥∥
2

k


= E

[
n∑
i=1

n∑
i=1

αiαjk(x̂i + ε, x̂j + ε)

]

=
n∑
i=1

n∑
i=1

αiαjk(x̂i, x̂j)

= αTKnα ,

(A.62)

where the first inequality follows by properties of the Bochner integral (see Equation 2.93), the fourth

equality follows from k’s translation invariance, and Kn is defined by [Kn]ij = k(x̂i, x̂j). Therefore, the

set of mean locations {x̂i}ni=1 satisfies the condition in Equation A.58, which concludes the proof. �
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