503,027 research outputs found

    Gated-Attention Architectures for Task-Oriented Language Grounding

    Full text link
    To perform tasks specified by natural language instructions, autonomous agents need to extract semantically meaningful representations of language and map it to visual elements and actions in the environment. This problem is called task-oriented language grounding. We propose an end-to-end trainable neural architecture for task-oriented language grounding in 3D environments which assumes no prior linguistic or perceptual knowledge and requires only raw pixels from the environment and the natural language instruction as input. The proposed model combines the image and text representations using a Gated-Attention mechanism and learns a policy to execute the natural language instruction using standard reinforcement and imitation learning methods. We show the effectiveness of the proposed model on unseen instructions as well as unseen maps, both quantitatively and qualitatively. We also introduce a novel environment based on a 3D game engine to simulate the challenges of task-oriented language grounding over a rich set of instructions and environment states.Comment: To appear in AAAI-1

    Towards Deep Network Steganography: From Networks to Networks

    Full text link
    With the widespread applications of the deep neural network (DNN), how to covertly transmit the DNN models in public channels brings us the attention, especially for those trained for secret-learning tasks. In this paper, we propose deep network steganography for the covert communication of DNN models. Unlike the existing steganography schemes which focus on the subtle modification of the cover data to accommodate the secrets, our scheme is learning task oriented, where the learning task of the secret DNN model (termed as secret-learning task) is disguised into another ordinary learning task conducted in a stego DNN model (termed as stego-learning task). To this end, we propose a gradient-based filter insertion scheme to insert interference filters into the important positions in the secret DNN model to form a stego DNN model. These positions are then embedded into the stego DNN model using a key by side information hiding. Finally, we activate the interference filters by a partial optimization strategy, such that the generated stego DNN model works on the stego-learning task. We conduct the experiments on both the intra-task steganography and inter-task steganography (i.e., the secret and stego-learning tasks belong to the same and different categories), both of which demonstrate the effectiveness of our proposed method for covert communication of DNN models.Comment: 8 pages. arXiv admin note: text overlap with arXiv:2302.1452

    Attention-Informed Mixed-Language Training for Zero-shot Cross-lingual Task-oriented Dialogue Systems

    Full text link
    Recently, data-driven task-oriented dialogue systems have achieved promising performance in English. However, developing dialogue systems that support low-resource languages remains a long-standing challenge due to the absence of high-quality data. In order to circumvent the expensive and time-consuming data collection, we introduce Attention-Informed Mixed-Language Training (MLT), a novel zero-shot adaptation method for cross-lingual task-oriented dialogue systems. It leverages very few task-related parallel word pairs to generate code-switching sentences for learning the inter-lingual semantics across languages. Instead of manually selecting the word pairs, we propose to extract source words based on the scores computed by the attention layer of a trained English task-related model and then generate word pairs using existing bilingual dictionaries. Furthermore, intensive experiments with different cross-lingual embeddings demonstrate the effectiveness of our approach. Finally, with very few word pairs, our model achieves significant zero-shot adaptation performance improvements in both cross-lingual dialogue state tracking and natural language understanding (i.e., intent detection and slot filling) tasks compared to the current state-of-the-art approaches, which utilize a much larger amount of bilingual data.Comment: Accepted as an oral presentation in AAAI 202

    Incorporating Joint Embeddings into Goal-Oriented Dialogues with Multi-Task Learning

    Full text link
    Attention-based encoder-decoder neural network models have recently shown promising results in goal-oriented dialogue systems. However, these models struggle to reason over and incorporate state-full knowledge while preserving their end-to-end text generation functionality. Since such models can greatly benefit from user intent and knowledge graph integration, in this paper we propose an RNN-based end-to-end encoder-decoder architecture which is trained with joint embeddings of the knowledge graph and the corpus as input. The model provides an additional integration of user intent along with text generation, trained with a multi-task learning paradigm along with an additional regularization technique to penalize generating the wrong entity as output. The model further incorporates a Knowledge Graph entity lookup during inference to guarantee the generated output is state-full based on the local knowledge graph provided. We finally evaluated the model using the BLEU score, empirical evaluation depicts that our proposed architecture can aid in the betterment of task-oriented dialogue system`s performance.Comment: The Semantic Web - 16th International Conference, ESWC 2019, Portoro\v{z}, Slovenia, June 2-6, 2019, Proceedings, page 225-23

    A Model-Agnostic Framework for Recommendation via Interest-aware Item Embeddings

    Full text link
    Item representation holds significant importance in recommendation systems, which encompasses domains such as news, retail, and videos. Retrieval and ranking models utilise item representation to capture the user-item relationship based on user behaviours. While existing representation learning methods primarily focus on optimising item-based mechanisms, such as attention and sequential modelling. However, these methods lack a modelling mechanism to directly reflect user interests within the learned item representations. Consequently, these methods may be less effective in capturing user interests indirectly. To address this challenge, we propose a novel Interest-aware Capsule network (IaCN) recommendation model, a model-agnostic framework that directly learns interest-oriented item representations. IaCN serves as an auxiliary task, enabling the joint learning of both item-based and interest-based representations. This framework adopts existing recommendation models without requiring substantial redesign. We evaluate the proposed approach on benchmark datasets, exploring various scenarios involving different deep neural networks, behaviour sequence lengths, and joint learning ratios of interest-oriented item representations. Experimental results demonstrate significant performance enhancements across diverse recommendation models, validating the effectiveness of our approach.Comment: Accepted Paper under LBR track in the Seventeenth ACM Conference on Recommender Systems (RecSys) 202
    • …
    corecore