5 research outputs found

    Learning to Generate Posters of Scientific Papers

    Full text link
    Researchers often summarize their work in the form of posters. Posters provide a coherent and efficient way to convey core ideas from scientific papers. Generating a good scientific poster, however, is a complex and time consuming cognitive task, since such posters need to be readable, informative, and visually aesthetic. In this paper, for the first time, we study the challenging problem of learning to generate posters from scientific papers. To this end, a data-driven framework, that utilizes graphical models, is proposed. Specifically, given content to display, the key elements of a good poster, including panel layout and attributes of each panel, are learned and inferred from data. Then, given inferred layout and attributes, composition of graphical elements within each panel is synthesized. To learn and validate our model, we collect and make public a Poster-Paper dataset, which consists of scientific papers and corresponding posters with exhaustively labelled panels and attributes. Qualitative and quantitative results indicate the effectiveness of our approach.Comment: in Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI'16), Phoenix, AZ, 201

    AutoPoster: A Highly Automatic and Content-aware Design System for Advertising Poster Generation

    Full text link
    Advertising posters, a form of information presentation, combine visual and linguistic modalities. Creating a poster involves multiple steps and necessitates design experience and creativity. This paper introduces AutoPoster, a highly automatic and content-aware system for generating advertising posters. With only product images and titles as inputs, AutoPoster can automatically produce posters of varying sizes through four key stages: image cleaning and retargeting, layout generation, tagline generation, and style attribute prediction. To ensure visual harmony of posters, two content-aware models are incorporated for layout and tagline generation. Moreover, we propose a novel multi-task Style Attribute Predictor (SAP) to jointly predict visual style attributes. Meanwhile, to our knowledge, we propose the first poster generation dataset that includes visual attribute annotations for over 76k posters. Qualitative and quantitative outcomes from user studies and experiments substantiate the efficacy of our system and the aesthetic superiority of the generated posters compared to other poster generation methods.Comment: Accepted for ACM MM 202

    Scientific digital poster assignments: strengthen concepts, train creativity, and communication skills

    Get PDF
    Student-centered learning promotes the development of students’ knowledge and skills with poster assignments used to ensure their active participation in academics. Therefore, this research aims to explore student competencies in concept strengthening, creativity, and communication skills from working on digital poster project assignments. Research using observation method with a quantitative approach. Data were collected from 86 participants learning plant systematics in their first semester based on the criteria for strengthening the concept, creativity, communication, and student responses. The instruments used for data collection were a poster scoring rubric and a closed questionnaire. Data were analyzed descriptively with simple statistics in the form of average, standard deviation, and percentage. The hypothesis about the correlation of concept strengthening, creativity, and communication was tested with Spearman’s coefficient. The result showed that students made 29 posters with concept strengthening, creativity and communication skills in the very good (3.42±0.49), very good (3.57±0.26), and very good (3.41±0.25) categories, respectively. Student competency shows a positive correlation between communication skills and concept reinforcement and between communication skills and creativity. Students give a positive response to the application of posters in learning in terms of learning experiences, concept strengthening, creativity and communication. Hence, using posters as project assignments in learning helps develop students’ knowledge and skills by acquiring varied experiences

    Reimagining City Configuration: Automated Urban Planning via Adversarial Learning

    Full text link
    Urban planning refers to the efforts of designing land-use configurations. Effective urban planning can help to mitigate the operational and social vulnerability of a urban system, such as high tax, crimes, traffic congestion and accidents, pollution, depression, and anxiety. Due to the high complexity of urban systems, such tasks are mostly completed by professional planners. But, human planners take longer time. The recent advance of deep learning motivates us to ask: can machines learn at a human capability to automatically and quickly calculate land-use configuration, so human planners can finally adjust machine-generated plans for specific needs? To this end, we formulate the automated urban planning problem into a task of learning to configure land-uses, given the surrounding spatial contexts. To set up the task, we define a land-use configuration as a longitude-latitude-channel tensor, where each channel is a category of POIs and the value of an entry is the number of POIs. The objective is then to propose an adversarial learning framework that can automatically generate such tensor for an unplanned area. In particular, we first characterize the contexts of surrounding areas of an unplanned area by learning representations from spatial graphs using geographic and human mobility data. Second, we combine each unplanned area and its surrounding context representation as a tuple, and categorize all the tuples into positive (well-planned areas) and negative samples (poorly-planned areas). Third, we develop an adversarial land-use configuration approach, where the surrounding context representation is fed into a generator to generate a land-use configuration, and a discriminator learns to distinguish among positive and negative samples.Comment: Proceedings of the 28th International Conference on Advances in Geographic Information Systems (2020
    corecore