10,275 research outputs found

    Social media and GIScience: Collection, analysis, and visualization of user-generated spatial data

    Get PDF
    Over the last decade, social media platforms have eclipsed the height of popular culture and communication technology, which, in combination with widespread access to GIS-enabled hardware (i.e. mobile phones), has resulted in the continuous creation of massive amounts of user-generated spatial data. This thesis explores how social media data have been utilized in GIS research and provides a commentary on the impacts of this next iteration of technological change with respect to GIScience. First, the roots of GIS technology are traced to set the stage for the examination of social media as a technological catalyst for change in GIScience. Next, a scoping review is conducted to gather and synthesize a summary of methods used to collect, analyze, and visualize this data. Finally, a case study exploring the spatio-temporality of crowdfunding behaviours in Canada during the COVID-19 pandemic is presented to demonstrate the utility of social media data in spatial research

    Traffic Prediction using Artificial Intelligence: Review of Recent Advances and Emerging Opportunities

    Full text link
    Traffic prediction plays a crucial role in alleviating traffic congestion which represents a critical problem globally, resulting in negative consequences such as lost hours of additional travel time and increased fuel consumption. Integrating emerging technologies into transportation systems provides opportunities for improving traffic prediction significantly and brings about new research problems. In order to lay the foundation for understanding the open research challenges in traffic prediction, this survey aims to provide a comprehensive overview of traffic prediction methodologies. Specifically, we focus on the recent advances and emerging research opportunities in Artificial Intelligence (AI)-based traffic prediction methods, due to their recent success and potential in traffic prediction, with an emphasis on multivariate traffic time series modeling. We first provide a list and explanation of the various data types and resources used in the literature. Next, the essential data preprocessing methods within the traffic prediction context are categorized, and the prediction methods and applications are subsequently summarized. Lastly, we present primary research challenges in traffic prediction and discuss some directions for future research.Comment: Published in Transportation Research Part C: Emerging Technologies (TR_C), Volume 145, 202

    Analysis of Social Unrest Events using Spatio-Temporal Data Clustering and Agent-Based Modelling

    Get PDF
    Social unrest such as appeals, protests, conflicts, fights and mass violence can result from a wide ranging of diverse factors making the analysis of causal relationships challenging, with high complexity and uncertainty. Unrest events can result in significant changes in a society ranging from new policies and regulations to regime change. Widespread unrest often arises through a process of feedback and cascading of a collection of past events over time, in regions that are close to each other. Understanding the dynamics of these social events and extrapolating their future growth will enable analysts to detect or forecast major societal events. The study and prediction of social unrest has primarily been done through case-studies and study of social media messaging using various natural language processing techniques. The grouping of related events is often done by subject matter experts that create profiles for countries or locations. We propose two approaches in understanding and modelling social unrest data: (1) spatio-temporal data clustering, and (2) agent-based modelling. We apply the clustering solution to real-world unrest events with socioeconomic and infrastructure factors. We also present a framework of an agent-based model where unrest events act as intelligent agents that continuously study their environment and perform actions. We run simulations of the agent-based model under varying conditions and evaluate the results in comparison to real-world data. Our results show the viability of our proposed solutions. Adviser: Leen-Kiat Soh and Ashok Sama

    Extracting Large Scale Spatio-Temporal Descriptions from Social Media

    Get PDF
    The ability to track large-scale events as they happen is essential for understanding them and coordinating reactions in an appropriate and timely manner. This is true, for example, in emergency management and decision-making support, where the constraints on both quality and latency of the extracted information can be stringent. In some contexts, real-time and large-scale sensor data and forecasts may be available. We are exploring the hypothesis that this kind of data can be augmented with the ingestion of semistructured data sources, like social media. Social media can diffuse valuable knowledge, such as direct witness or expert opinions, while their noisy nature makes them not trivial to manage. This knowledge can be used to complement and confirm other spatio-temporal descriptions of events, highlighting previously unseen or undervalued aspects. The critical aspects of this investigation, such as event sensing, multilingualism, selection of visual evidence, and geolocation, are currently being studied as a foundation for a unified spatio-temporal representation of multi-modal descriptions. The paper presents, together with an introduction on the topics, the work done so far on this line of research, also presenting case studies relevant to the posed challenges, focusing on emergencies caused by natural disasters
    • …
    corecore