336 research outputs found

    SEQ^3: Differentiable Sequence-to-Sequence-to-Sequence Autoencoder for Unsupervised Abstractive Sentence Compression

    Get PDF
    Neural sequence-to-sequence models are currently the dominant approach in several natural language processing tasks, but require large parallel corpora. We present a sequence-to-sequence-to-sequence autoencoder (SEQ^3), consisting of two chained encoder-decoder pairs, with words used as a sequence of discrete latent variables. We apply the proposed model to unsupervised abstractive sentence compression, where the first and last sequences are the input and reconstructed sentences, respectively, while the middle sequence is the compressed sentence. Constraining the length of the latent word sequences forces the model to distill important information from the input. A pretrained language model, acting as a prior over the latent sequences, encourages the compressed sentences to be human-readable. Continuous relaxations enable us to sample from categorical distributions, allowing gradient-based optimization, unlike alternatives that rely on reinforcement learning. The proposed model does not require parallel text-summary pairs, achieving promising results in unsupervised sentence compression on benchmark datasets.Comment: Accepted to NAACL 201

    Generating Distractors for Reading Comprehension Questions from Real Examinations

    Full text link
    We investigate the task of distractor generation for multiple choice reading comprehension questions from examinations. In contrast to all previous works, we do not aim at preparing words or short phrases distractors, instead, we endeavor to generate longer and semantic-rich distractors which are closer to distractors in real reading comprehension from examinations. Taking a reading comprehension article, a pair of question and its correct option as input, our goal is to generate several distractors which are somehow related to the answer, consistent with the semantic context of the question and have some trace in the article. We propose a hierarchical encoder-decoder framework with static and dynamic attention mechanisms to tackle this task. Specifically, the dynamic attention can combine sentence-level and word-level attention varying at each recurrent time step to generate a more readable sequence. The static attention is to modulate the dynamic attention not to focus on question irrelevant sentences or sentences which contribute to the correct option. Our proposed framework outperforms several strong baselines on the first prepared distractor generation dataset of real reading comprehension questions. For human evaluation, compared with those distractors generated by baselines, our generated distractors are more functional to confuse the annotators.Comment: AAAI201
    • …
    corecore