1,828 research outputs found

    Learning to Attend, Copy, and Generate for Session-Based Query Suggestion

    Full text link
    Users try to articulate their complex information needs during search sessions by reformulating their queries. To make this process more effective, search engines provide related queries to help users in specifying the information need in their search process. In this paper, we propose a customized sequence-to-sequence model for session-based query suggestion. In our model, we employ a query-aware attention mechanism to capture the structure of the session context. is enables us to control the scope of the session from which we infer the suggested next query, which helps not only handle the noisy data but also automatically detect session boundaries. Furthermore, we observe that, based on the user query reformulation behavior, within a single session a large portion of query terms is retained from the previously submitted queries and consists of mostly infrequent or unseen terms that are usually not included in the vocabulary. We therefore empower the decoder of our model to access the source words from the session context during decoding by incorporating a copy mechanism. Moreover, we propose evaluation metrics to assess the quality of the generative models for query suggestion. We conduct an extensive set of experiments and analysis. e results suggest that our model outperforms the baselines both in terms of the generating queries and scoring candidate queries for the task of query suggestion.Comment: Accepted to be published at The 26th ACM International Conference on Information and Knowledge Management (CIKM2017

    KGAT: Knowledge Graph Attention Network for Recommendation

    Full text link
    To provide more accurate, diverse, and explainable recommendation, it is compulsory to go beyond modeling user-item interactions and take side information into account. Traditional methods like factorization machine (FM) cast it as a supervised learning problem, which assumes each interaction as an independent instance with side information encoded. Due to the overlook of the relations among instances or items (e.g., the director of a movie is also an actor of another movie), these methods are insufficient to distill the collaborative signal from the collective behaviors of users. In this work, we investigate the utility of knowledge graph (KG), which breaks down the independent interaction assumption by linking items with their attributes. We argue that in such a hybrid structure of KG and user-item graph, high-order relations --- which connect two items with one or multiple linked attributes --- are an essential factor for successful recommendation. We propose a new method named Knowledge Graph Attention Network (KGAT) which explicitly models the high-order connectivities in KG in an end-to-end fashion. It recursively propagates the embeddings from a node's neighbors (which can be users, items, or attributes) to refine the node's embedding, and employs an attention mechanism to discriminate the importance of the neighbors. Our KGAT is conceptually advantageous to existing KG-based recommendation methods, which either exploit high-order relations by extracting paths or implicitly modeling them with regularization. Empirical results on three public benchmarks show that KGAT significantly outperforms state-of-the-art methods like Neural FM and RippleNet. Further studies verify the efficacy of embedding propagation for high-order relation modeling and the interpretability benefits brought by the attention mechanism.Comment: KDD 2019 research trac

    Machine learning-based tools for wind turbine acoustic monitoring

    Get PDF
    The identification and separation of sound sources has always been a difficult problem for acoustic technicians to tackle. This is due to the considerable complexity of a sound that is made up of many contributions at different frequencies. Each sound has a specific frequency spectrum, but when many sounds overlap it becomes difficult to discriminate between the different contributions. In this case, it can be extremely useful to have a tool that is capable of identifying the operating conditions of an acoustic source. In this study, measurements were made of the noise emitted by a wind turbine in the vicinity of a sensitive receptor. To identify the operating conditions of the wind turbine, average spectral levels in one-third octave bands were used. A model based on a support vector machine (SVM) was developed for the detection of the operating conditions of the wind turbine; then a model based on an artificial neural network was used to compare the performance of both models. The high precision returned by the simulation models supports the adoption of these tools as a support for the acoustic characterization of noise in environments close to wind turbines
    corecore