2 research outputs found

    DeltaPhish: Detecting Phishing Webpages in Compromised Websites

    Full text link
    The large-scale deployment of modern phishing attacks relies on the automatic exploitation of vulnerable websites in the wild, to maximize profit while hindering attack traceability, detection and blacklisting. To the best of our knowledge, this is the first work that specifically leverages this adversarial behavior for detection purposes. We show that phishing webpages can be accurately detected by highlighting HTML code and visual differences with respect to other (legitimate) pages hosted within a compromised website. Our system, named DeltaPhish, can be installed as part of a web application firewall, to detect the presence of anomalous content on a website after compromise, and eventually prevent access to it. DeltaPhish is also robust against adversarial attempts in which the HTML code of the phishing page is carefully manipulated to evade detection. We empirically evaluate it on more than 5,500 webpages collected in the wild from compromised websites, showing that it is capable of detecting more than 99% of phishing webpages, while only misclassifying less than 1% of legitimate pages. We further show that the detection rate remains higher than 70% even under very sophisticated attacks carefully designed to evade our system.Comment: Preprint version of the work accepted at ESORICS 201

    A COMPREHENSIVE EVALUATION OF FEATURE-BASED MALICIOUS WEBSITE DETECTION

    Get PDF
    Although the internet enables many important functions of modern life, it is also a ground for nefarious activity by malicious actors and cybercriminals. For example, malicious websites facilitate phishing attacks, malware infections, data theft, and disruption. A major component of cybersecurity is to detect and mitigate attacks enabled by malicious websites. Although prior researchers have presented promising results – specifically in the use of website features to detect malicious websites – malicious website detection continues to pose major challenges. This dissertation presents an investigation into feature-based malicious website detection. We conducted six studies on malicious website detection, with a focus on discovering new features for malicious website detection, challenging assumptions of features from prior research, comparing the importance of the features for malicious website detection, building and evaluating detection models over various scenarios, and evaluating malicious website detection models across different datasets and over time. We evaluated this approach on various datasets, including: a dataset composed of several threats from industry; a dataset derived from the Alexa top one million domains and supplemented with open source threat intelligence information; and a dataset consisting of websites gathered repeatedly over time. Results led us to postulate that new, unstudied, features could be incorporated to improve malicious website detection models, since, in many cases, models built with new features outperformed models built from features used in prior research and did so with fewer features. We also found that features discovered using feature selection could be applied to other datasets with minor adjustments. In addition: we demonstrated that the performance of detection models decreased over time; we measured the change of websites in relation to our detection model; and we demonstrated the benefit of re-training in various scenarios
    corecore