122,004 research outputs found

    Learning to be energy-efficient in cooperative networks

    Get PDF
    Cooperative communication has great potential to improve the transmit diversity in multiple users environments. To achieve a high network-wide energy-efficient performance, this letter poses the relay selection problem of cooperative communication as a noncooperative automata game considering nodes’ selfishness, proving that it is an ordinal game (OPG), and presents a game-theoretic analysis to address the benefit equilibrium decision-making issue in relay selection. A stochastic learning-based relay selection algorithm is proposed for transmitters to learn a Nash-equilibrium strategy in a distributed manner. We prove through theoretical and numerical analysis that the proposed algorithm is guaranteed to converge to a Nash equilibrium state, where the resulting cooperative network is energy-efficient and reliable. The strength of the proposed algorithm is also confirmed through comparative simulations in terms of energy benefit and fairness performances

    Cooperation Enforcement for Packet Forwarding Optimization in Multi-hop Ad-hoc Networks

    Full text link
    Ad-hoc networks are independent of any infrastructure. The nodes are autonomous and make their own decisions. They also have limited energy resources. Thus, a node tends to behave selfishly when it is asked to forward the packets of other nodes. Indeed, it would rather choose to reject a forwarding request in order to save its energy. To overcome this problem, the nodes need to be motivated to cooperate. To this end, we propose a self-learning repeated game framework to enforce cooperation between the nodes of a network. This framework is inspired by the concept of "The Weakest Link" TV game. Each node has a utility function whose value depends on its cooperation in forwarding packets on a route as well as the cooperation of all the nodes that form this same route. The more these nodes cooperate the higher is their utility value. This would establish a cooperative spirit within the nodes of the networks. All the nodes will then more or less equally participate to the forwarding tasks which would then eventually guarantee a more efficient packets forwarding from sources to respective destinations. Simulations are run and the results show that the proposed framework efficiently enforces nodes to cooperate and outperforms two other self-learning repeated game frameworks which we are interested in.Comment: Published in the proceedings of the IEEE Wireless Communications and Networking Conference (WCNC 2012), Paris, France, 201

    RESOURCE AND ENVIRONMENT AWARE SENSOR COMMUNICATIONS: FRAMEWORK, OPTIMIZATION, AND APPLICATIONS

    Get PDF
    Recent advances in low power integrated circuit devices, micro-electro-mechanical system (MEMS) technologies, and communications technologies have made possible the deployment of low-cost, low power sensors that can be integrated to form wireless sensor networks (WSN). These wireless sensor networks have vast important applications, i.e.: from battlefield surveillance system to modern highway and industry monitoring system; from the emergency rescue system to early forest fire detection and the very sophisticated earthquake early detection system. Having the broad range of applications, the sensor network is becoming an integral part of human lives. However, the success of sensor networks deployment depends on the reliability of the network itself. There are many challenging problems to make the deployed network more reliable. These problems include but not limited to extending network lifetime, increasing each sensor node throughput, efficient collection of information, enforcing nodes to collaboratively accomplish certain network tasks, etc. One important aspect in designing the algorithm is that the algorithm should be completely distributed and scalable. This aspect has posed a tremendous challenge in designing optimal algorithm in sensor networks. This thesis addresses various challenging issues encountered in wireless sensor networks. The most important characteristic in sensor networks is to prolong the network lifetime. However, due to the stringent energy requirement, the network requires highly energy efficient resource allocation. This highly energy-efficient resource allocation requires the application of an energy awareness system. In fact, we envision a broader resource and environment aware optimization in the sensor networks. This framework reconfigures the parameters from different communication layers according to its environment and resource. We first investigate the application of online reinforcement learning in solving the modulation and transmit power selection. We analyze the effectiveness of the learning algorithm by comparing the effective good throughput that is successfully delivered per unit energy as a metric. This metric shows how efficient the energy usage in sensor communication is. In many practical sensor scenarios, maximizing the energy efficient in a single sensor node may not be sufficient. Therefore, we continue to work on the routing problem to maximize the number of delivered packet before the network becomes useless. The useless network is characterized by the disintegrated remaining network. We design a class of energy efficient routing algorithms that explicitly takes the connectivity condition of the remaining network in to account. We also present the distributed asynchronous routing implementation based on reinforcement learning algorithm. This work can be viewed as distributed connectivity-aware energy efficient routing. We then explore the advantages obtained by doing cooperative routing for network lifetime maximization. We propose a power allocation in the cooperative routing called the maximum lifetime power allocation. The proposed allocation takes into account the residual energy in the nodes when doing the cooperation. In fact, our criterion lets the nodes with more energy to help more compared to the nodes with less energy. We continue to look at the problem of cooperation enforcement in ad-hoc network. We show that by combining the repeated game and self learning algorithm, a better cooperation point can be obtained. Finally, we demonstrate an example of channel-aware application for multimedia communication. In all case studies, we employ optimization scheme that is equipped with the resource and environment awareness. We hope that the proposed resource and environment aware optimization framework will serve as the first step towards the realization of intelligent sensor communications
    • …
    corecore