13 research outputs found

    EQG-RACE: Examination-Type Question Generation

    Full text link
    Question Generation (QG) is an essential component of the automatic intelligent tutoring systems, which aims to generate high-quality questions for facilitating the reading practice and assessments. However, existing QG technologies encounter several key issues concerning the biased and unnatural language sources of datasets which are mainly obtained from the Web (e.g. SQuAD). In this paper, we propose an innovative Examination-type Question Generation approach (EQG-RACE) to generate exam-like questions based on a dataset extracted from RACE. Two main strategies are employed in EQG-RACE for dealing with discrete answer information and reasoning among long contexts. A Rough Answer and Key Sentence Tagging scheme is utilized to enhance the representations of input. An Answer-guided Graph Convolutional Network (AG-GCN) is designed to capture structure information in revealing the inter-sentences and intra-sentence relations. Experimental results show a state-of-the-art performance of EQG-RACE, which is apparently superior to the baselines. In addition, our work has established a new QG prototype with a reshaped dataset and QG method, which provides an important benchmark for related research in future work. We will make our data and code publicly available for further research.Comment: Accepted by AAAI-202

    Towards Question-based Recommender Systems

    Get PDF
    Conversational and question-based recommender systems have gained increasing attention in recent years, with users enabled to converse with the system and better control recommendations. Nevertheless, research in the field is still limited, compared to traditional recommender systems. In this work, we propose a novel Question-based recommendation method, Qrec, to assist users to find items interactively, by answering automatically constructed and algorithmically chosen questions. Previous conversational recommender systems ask users to express their preferences over items or item facets. Our model, instead, asks users to express their preferences over descriptive item features. The model is first trained offline by a novel matrix factorization algorithm, and then iteratively updates the user and item latent factors online by a closed-form solution based on the user answers. Meanwhile, our model infers the underlying user belief and preferences over items to learn an optimal question-asking strategy by using Generalized Binary Search, so as to ask a sequence of questions to the user. Our experimental results demonstrate that our proposed matrix factorization model outperforms the traditional Probabilistic Matrix Factorization model. Further, our proposed Qrec model can greatly improve the performance of state-of-the-art baselines, and it is also effective in the case of cold-start user and item recommendations.Comment: accepted by SIGIR 202

    Learning to Ask Conversational Questions by Optimizing Levenshtein Distance

    Get PDF
    Conversational Question Simplification (CQS) aims to simplify self-contained questions into conversational ones by incorporating some conversational characteristics, e.g., anaphora and ellipsis. Existing maximum likelihood estimation (MLE) based methods often get trapped in easily learned tokens as all tokens are treated equally during training. In this work, we introduce a Reinforcement Iterative Sequence Editing (RISE) framework that optimizes the minimum Levenshtein distance (MLD) through explicit editing actions. RISE is able to pay attention to tokens that are related to conversational characteristics. To train RISE, we devise an Iterative Reinforce Training (IRT) algorithm with a Dynamic Programming based Sampling (DPS) process to improve exploration. Experimental results on two benchmark datasets show that RISE significantly outperforms state-of-the-art methods and generalizes well on unseen data.Comment: 13 pages, 4 figures, Published in ACL 202

    Low-Resource Response Generation with Template Prior

    Full text link
    We study open domain response generation with limited message-response pairs. The problem exists in real-world applications but is less explored by the existing work. Since the paired data now is no longer enough to train a neural generation model, we consider leveraging the large scale of unpaired data that are much easier to obtain, and propose response generation with both paired and unpaired data. The generation model is defined by an encoder-decoder architecture with templates as prior, where the templates are estimated from the unpaired data as a neural hidden semi-markov model. By this means, response generation learned from the small paired data can be aided by the semantic and syntactic knowledge in the large unpaired data. To balance the effect of the prior and the input message to response generation, we propose learning the whole generation model with an adversarial approach. Empirical studies on question response generation and sentiment response generation indicate that when only a few pairs are available, our model can significantly outperform several state-of-the-art response generation models in terms of both automatic and human evaluation.Comment: Accepted by EMNLP201
    corecore