42,798 research outputs found

    Enhancing speaker verification accuracy with deep ensemble learning and inclusion of multifaceted demographic factors

    Get PDF
    Effective speaker identification is essential for achieving robust speaker recognition in real-world applications such as mobile devices, security, and entertainment while ensuring high accuracy. However, deep learning models trained on large datasets with diverse demographic and environmental factors may lead to increased misclassification and longer processing times. This study proposes incorporating ethnicity and gender information as critical parameters in a deep learning model to enhance accuracy. Two convolutional neural network (CNN) models classify gender and ethnicity, followed by a Siamese deep learning model trained with critical parameters and additional features for speaker verification. The proposed model was tested using the VoxCeleb 2 database, which includes over one million utterances from 6,112 celebrities. In an evaluation after 500 epochs, equal error rate (EER) and minimum decision cost function (minDCF) showed notable results, scoring 1.68 and 0.10, respectively. The proposed model outperforms existing deep learning models, demonstrating improved performance in terms of reduced misclassification errors and faster processing times

    Speaker verification using sequence discriminant support vector machines

    Get PDF
    This paper presents a text-independent speaker verification system using support vector machines (SVMs) with score-space kernels. Score-space kernels generalize Fisher kernels and are based on underlying generative models such as Gaussian mixture models (GMMs). This approach provides direct discrimination between whole sequences, in contrast with the frame-level approaches at the heart of most current systems. The resultant SVMs have a very high dimensionality since it is related to the number of parameters in the underlying generative model. To address problems that arise in the resultant optimization we introduce a technique called spherical normalization that preconditions the Hessian matrix. We have performed speaker verification experiments using the PolyVar database. The SVM system presented here reduces the relative error rates by 34% compared to a GMM likelihood ratio system

    Spoof detection using time-delay shallow neural network and feature switching

    Full text link
    Detecting spoofed utterances is a fundamental problem in voice-based biometrics. Spoofing can be performed either by logical accesses like speech synthesis, voice conversion or by physical accesses such as replaying the pre-recorded utterance. Inspired by the state-of-the-art \emph{x}-vector based speaker verification approach, this paper proposes a time-delay shallow neural network (TD-SNN) for spoof detection for both logical and physical access. The novelty of the proposed TD-SNN system vis-a-vis conventional DNN systems is that it can handle variable length utterances during testing. Performance of the proposed TD-SNN systems and the baseline Gaussian mixture models (GMMs) is analyzed on the ASV-spoof-2019 dataset. The performance of the systems is measured in terms of the minimum normalized tandem detection cost function (min-t-DCF). When studied with individual features, the TD-SNN system consistently outperforms the GMM system for physical access. For logical access, GMM surpasses TD-SNN systems for certain individual features. When combined with the decision-level feature switching (DLFS) paradigm, the best TD-SNN system outperforms the best baseline GMM system on evaluation data with a relative improvement of 48.03\% and 49.47\% for both logical and physical access, respectively
    • ā€¦
    corecore