84 research outputs found

    Soft computing for intelligent data analysis

    Get PDF
    Intelligent data analysis (IDA) is an interdisciplinary study concerned with the effective analysis of data. The paper briefly looks at some of the key issues in intelligent data analysis, discusses the opportunities for soft computing in this context, and presents several IDA case studies in which soft computing has played key roles. These studies are all concerned with complex real-world problem solving, including consistency checking between mass spectral data with proposed chemical structures, screening for glaucoma and other eye diseases, forecasting of visual field deterioration, and diagnosis in an oil refinery involving multivariate time series. Bayesian networks, evolutionary computation, neural networks, and machine learning in general are some of those soft computing techniques effectively used in these studies

    Learning causal models that make correct manipulation predictions with time series data

    Get PDF
    One of the fundamental purposes of causal models is using them to predict the effects of manipulating various components of a system. It has been argued by Dash (2005, 2003) that the Do operator will fail when applied to an equilibrium model, unless the underlying dynamic system obeys what he calls Equilibration-Manipulation Commutability. Unfortunately, this fact renders most existing causal discovery algorithms unreliable for reasoning about manipulations. Motivated by this caveat, in this paper we present a novel approach to causal discovery of dynamic models from time series. The approach uses a representation of dynamic causal models motivated by Iwasaki and Simon (1994), which asserts that all ā€œcausation across time" occurs because a variableā€™s derivative has been affected instantaneously. We present an algorithm that exploits this representation within a constraint-based learning framework by numerically calculating derivatives and learning instantaneous relationships. We argue that due to numerical errors in higher order derivatives, care must be taken when learning causal structure, but we show that the Iwasaki-Simon representation reduces the search space considerably, allowing us to forego calculating many high-order derivatives. In order for our algorithm to discover the dynamic model, it is necessary that the time-scale of the data is much finer than any temporal process of the system. Finally, we show that our approach can correctly recover the structure of a fairly complex dynamic system, and can predict the effect of manipulations accurately when a manipulation does not cause an instability. To our knowledge, this is the first causal discovery algorithm that has demonstrated that it can correctly predict the effects of manipulations for a system that does not obey the EMC condition

    Analyzing covert social network foundation behind terrorism disaster

    Full text link
    This paper addresses a method to analyze the covert social network foundation hidden behind the terrorism disaster. It is to solve a node discovery problem, which means to discover a node, which functions relevantly in a social network, but escaped from monitoring on the presence and mutual relationship of nodes. The method aims at integrating the expert investigator's prior understanding, insight on the terrorists' social network nature derived from the complex graph theory, and computational data processing. The social network responsible for the 9/11 attack in 2001 is used to execute simulation experiment to evaluate the performance of the method.Comment: 17pages, 10 figures, submitted to Int. J. Services Science
    • ā€¦
    corecore