3,588 research outputs found

    Learning the selection of actions for an autonomous social robot by reinforcement learning based on motivations

    Get PDF
    Autonomy is a prime issue on robotics field and it is closely related to decision making. Last researches on decision making for social robots are focused on biologically inspired mechanisms for taking decisions. Following this approach, we propose a motivational system for decision making, using internal (drives) and external stimuli for learning to choose the right action. Actions are selected from a finite set of skills in order to keep robot's needs within an acceptable range. The robot uses reinforcement learning in order to calculate the suitability of every action in each state. The state of the robot is determined by the dominant motivation and its relation to the objects presents in its environment. The used reinforcement learning method exploits a new algorithm called Object Q-Learning. The proposed reduction of the state space and the new algorithm considering the collateral effects (relationship between different objects) results in a suitable algorithm to be applied to robots living in real environments. In this paper, a first implementation of the decision making system and the learning process is implemented on a social robot showing an improvement in robot's performance. The quality of its performance will be determined by observing the evolution of the robot's wellbeing.The funds provided by the Spanish Government through the project called “Peer to Peer Robot-Human Interaction” (R2H), of MEC (Ministry of Science and Education), the project “A new approach to social robotics” (AROS), of MICINN (Ministry of Science and Innovation), and the RoboCity2030-II-CM project (S2009/DPI-1559), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU

    Intrinsic Motivation Systems for Autonomous Mental Development

    Get PDF
    Exploratory activities seem to be intrinsically rewarding for children and crucial for their cognitive development. Can a machine be endowed with such an intrinsic motivation system? This is the question we study in this paper, presenting a number of computational systems that try to capture this drive towards novel or curious situations. After discussing related research coming from developmental psychology, neuroscience, developmental robotics, and active learning, this paper presents the mechanism of Intelligent Adaptive Curiosity, an intrinsic motivation system which pushes a robot towards situations in which it maximizes its learning progress. This drive makes the robot focus on situations which are neither too predictable nor too unpredictable, thus permitting autonomous mental development.The complexity of the robot’s activities autonomously increases and complex developmental sequences self-organize without being constructed in a supervised manner. Two experiments are presented illustrating the stage-like organization emerging with this mechanism. In one of them, a physical robot is placed on a baby play mat with objects that it can learn to manipulate. Experimental results show that the robot first spends time in situations which are easy to learn, then shifts its attention progressively to situations of increasing difficulty, avoiding situations in which nothing can be learned. Finally, these various results are discussed in relation to more complex forms of behavioral organization and data coming from developmental psychology. Key words: Active learning, autonomy, behavior, complexity, curiosity, development, developmental trajectory, epigenetic robotics, intrinsic motivation, learning, reinforcement learning, values

    A biologically inspired architecture for an autonomous and social robot

    Get PDF
    Lately, lots of effort has been put into the construction of robots able to live among humans. This fact has favored the development of personal or social robots, which are expected to behave in a natural way. This implies that these robots could meet certain requirements, for example, to be able to decide their own actions (autonomy), to be able to make deliberative plans (reasoning), or to be able to have an emotional behavior in order to facilitate human-robot interaction. In this paper, the authors present a bioinspired control architecture for an autonomous and social robot, which tries to accomplish some of these features. In order to develop this new architecture, authors have used as a base a prior hybrid control architecture (AD) that is also biologically inspired. Nevertheless, in the later, the task to be accomplished at each moment is determined by a fix sequence processed by the Main Sequencer. Therefore, the main sequencer of the architecture coordinates the previously programmed sequence of skills that must be executed. In the new architecture, the main sequencer is substituted by a decision making system based on drives, motivations, emotions, and self-learning, which decides the proper action at every moment according to robot's state. Consequently, the robot improves its autonomy since the added decision making system will determine the goal and consequently the skills to be executed. A basic version of this new architecture has been implemented on a real robotic platform. Some experiments are shown at the end of the paper.This work has been supported by the Spanish Government through the project called “Peer to Peer Robot-Human Interaction” (R2H), of MEC (Ministry of Science and Education), the project “A new approach to social robotics” (AROS), of MICINN (Ministry of Science and Innovation), the CAM Project S2009/DPI-1559/ROBOCITY2030 II, developed by the research team RoboticsLab at the University Carlos III of Madrid

    Learning Behaviors by an Autonomous Social Robot with Motivations

    Get PDF
    In this study, an autonomous social robot is living in a laboratory where it can interact with several items (people included). Its goal is to learn by itself the proper behaviors in order to maintain its well-being at as high a quality as possible. Several experiments have been conducted to test the performance of the system. The Object Q-Learning algorithm has been implemented in the robot as the learning algorithm. This algorithm is a variation of the traditional Q-Learning because it considers a reduced state space and collateral effects. The comparison of the performance of both algorithms is shown in the first part of the experiments. Moreover, two mechanisms intended to reduce the learning session durations have been included: Well-Balanced Exploration and Amplified Reward. Their advantages are justified in the results obtained in the second part of the experiments. Finally, the behaviors learned by our robot are analyzed. The resulting behaviors have not been preprogrammed. In fact, they have been learned by real interaction in the real world and are related to the motivations of the robot. These are natural behaviors in the sense that they can be easily understood by humans observing the robot.The authors gratefully acknowledge the funds provided by the Spanish Government through the project call "Aplicaciones de los robots sociales", DPI2011-26980 from the Spanish Ministry of Economy and Competitiveness.Publicad

    Reinforcement Learning Approaches in Social Robotics

    Full text link
    This article surveys reinforcement learning approaches in social robotics. Reinforcement learning is a framework for decision-making problems in which an agent interacts through trial-and-error with its environment to discover an optimal behavior. Since interaction is a key component in both reinforcement learning and social robotics, it can be a well-suited approach for real-world interactions with physically embodied social robots. The scope of the paper is focused particularly on studies that include social physical robots and real-world human-robot interactions with users. We present a thorough analysis of reinforcement learning approaches in social robotics. In addition to a survey, we categorize existent reinforcement learning approaches based on the used method and the design of the reward mechanisms. Moreover, since communication capability is a prominent feature of social robots, we discuss and group the papers based on the communication medium used for reward formulation. Considering the importance of designing the reward function, we also provide a categorization of the papers based on the nature of the reward. This categorization includes three major themes: interactive reinforcement learning, intrinsically motivated methods, and task performance-driven methods. The benefits and challenges of reinforcement learning in social robotics, evaluation methods of the papers regarding whether or not they use subjective and algorithmic measures, a discussion in the view of real-world reinforcement learning challenges and proposed solutions, the points that remain to be explored, including the approaches that have thus far received less attention is also given in the paper. Thus, this paper aims to become a starting point for researchers interested in using and applying reinforcement learning methods in this particular research field

    Motivations, Values and Emotions: 3 sides of the same coin

    Get PDF
    This position paper speaks to the interrelationships between the three concepts of motivations, values, and emotion. Motivations prime actions, values serve to choose between motivations, emotions provide a common currency for values, and emotions implement motivations. While conceptually distinct, the three are so pragmatically intertwined as to differ primarily from our taking different points of view. To make these points more transparent, we briefly describe the three in the context a cognitive architecture, the LIDA model, for software agents and robots that models human cognition, including a developmental period. We also compare the LIDA model with other models of cognition, some involving learning and emotions. Finally, we conclude that artificial emotions will prove most valuable as implementers of motivations in situations requiring learning and development
    • 

    corecore