389 research outputs found

    Mobile Video Object Detection with Temporally-Aware Feature Maps

    Full text link
    This paper introduces an online model for object detection in videos designed to run in real-time on low-powered mobile and embedded devices. Our approach combines fast single-image object detection with convolutional long short term memory (LSTM) layers to create an interweaved recurrent-convolutional architecture. Additionally, we propose an efficient Bottleneck-LSTM layer that significantly reduces computational cost compared to regular LSTMs. Our network achieves temporal awareness by using Bottleneck-LSTMs to refine and propagate feature maps across frames. This approach is substantially faster than existing detection methods in video, outperforming the fastest single-frame models in model size and computational cost while attaining accuracy comparable to much more expensive single-frame models on the Imagenet VID 2015 dataset. Our model reaches a real-time inference speed of up to 15 FPS on a mobile CPU.Comment: In CVPR 201

    Tree Memory Networks for Modelling Long-term Temporal Dependencies

    Full text link
    In the domain of sequence modelling, Recurrent Neural Networks (RNN) have been capable of achieving impressive results in a variety of application areas including visual question answering, part-of-speech tagging and machine translation. However this success in modelling short term dependencies has not successfully transitioned to application areas such as trajectory prediction, which require capturing both short term and long term relationships. In this paper, we propose a Tree Memory Network (TMN) for modelling long term and short term relationships in sequence-to-sequence mapping problems. The proposed network architecture is composed of an input module, controller and a memory module. In contrast to related literature, which models the memory as a sequence of historical states, we model the memory as a recursive tree structure. This structure more effectively captures temporal dependencies across both short term and long term sequences using its hierarchical structure. We demonstrate the effectiveness and flexibility of the proposed TMN in two practical problems, aircraft trajectory modelling and pedestrian trajectory modelling in a surveillance setting, and in both cases we outperform the current state-of-the-art. Furthermore, we perform an in depth analysis on the evolution of the memory module content over time and provide visual evidence on how the proposed TMN is able to map both long term and short term relationships efficiently via a hierarchical structure

    Temporal Cross-Media Retrieval with Soft-Smoothing

    Full text link
    Multimedia information have strong temporal correlations that shape the way modalities co-occur over time. In this paper we study the dynamic nature of multimedia and social-media information, where the temporal dimension emerges as a strong source of evidence for learning the temporal correlations across visual and textual modalities. So far, cross-media retrieval models, explored the correlations between different modalities (e.g. text and image) to learn a common subspace, in which semantically similar instances lie in the same neighbourhood. Building on such knowledge, we propose a novel temporal cross-media neural architecture, that departs from standard cross-media methods, by explicitly accounting for the temporal dimension through temporal subspace learning. The model is softly-constrained with temporal and inter-modality constraints that guide the new subspace learning task by favouring temporal correlations between semantically similar and temporally close instances. Experiments on three distinct datasets show that accounting for time turns out to be important for cross-media retrieval. Namely, the proposed method outperforms a set of baselines on the task of temporal cross-media retrieval, demonstrating its effectiveness for performing temporal subspace learning.Comment: To appear in ACM MM 201

    Breaking Down the Barriers To Operator Workload Estimation: Advancing Algorithmic Handling of Temporal Non-Stationarity and Cross-Participant Differences for EEG Analysis Using Deep Learning

    Get PDF
    This research focuses on two barriers to using EEG data for workload assessment: day-to-day variability, and cross- participant applicability. Several signal processing techniques and deep learning approaches are evaluated in multi-task environments. These methods account for temporal, spatial, and frequential data dependencies. Variance of frequency- domain power distributions for cross-day workload classification is statistically significant. Skewness and kurtosis are not significant in an environment absent workload transitions, but are salient with transitions present. LSTMs improve day- to-day feature stationarity, decreasing error by 59% compared to previous best results. A multi-path convolutional recurrent model using bi-directional, residual recurrent layers significantly increases predictive accuracy and decreases cross-participant variance. Deep learning regression approaches are applied to a multi-task environment with workload transitions. Accounting for temporal dependence significantly reduces error and increases correlation compared to baselines. Visualization techniques for LSTM feature saliency are developed to understand EEG analysis model biases

    Improving gesture recognition through spatial focus of attention

    Get PDF
    2018 Fall.Includes bibliographical references.Gestures are a common form of human communication and important for human computer interfaces (HCI). Most recent approaches to gesture recognition use deep learning within multi- channel architectures. We show that when spatial attention is focused on the hands, gesture recognition improves significantly, particularly when the channels are fused using a sparse network. We propose an architecture (FOANet) that divides processing among four modalities (RGB, depth, RGB flow, and depth flow), and three spatial focus of attention regions (global, left hand, and right hand). The resulting 12 channels are fused using sparse networks. This architecture improves performance on the ChaLearn IsoGD dataset from a previous best of 67.71% to 82.07%, and on the NVIDIA dynamic hand gesture dataset from 83.8% to 91.28%. We extend FOANet to perform gesture recognition on continuous streams of data. We show that the best temporal fusion strategies for multi-channel networks depends on the modality (RGB vs depth vs flow field) and target (global vs left hand vs right hand) of the channel. The extended architecture achieves optimum performance using Gaussian Pooling for global channels, LSTMs for focused (left hand or right hand) flow field channels, and late Pooling for focused RGB and depth channels. The resulting system achieves a mean Jaccard Index of 0.7740 compared to the previous best result of 0.6103 on the ChaLearn ConGD dataset without first pre-segmenting the videos into single gesture clips. Human vision has α and β channels for processing different modalities in addition to spatial attention similar to FOANet. However, unlike FOANet, attention is not implemented through separate neural channels. Instead, attention is implemented through top-down excitation of neurons corresponding to specific spatial locations within the α and β channels. Motivated by the covert attention in human vision, we propose a new architecture called CANet (Covert Attention Net), that merges spatial attention channels while preserving the concept of attention. The focus layers of CANet allows it to focus attention on hands without having dedicated attention channels. CANet outperforms FOANet by achieving an accuracy of 84.79% on ChaLearn IsoGD dataset while being efficient (≈35% of FOANet parameters and ≈70% of FOANet operations). In addition to producing state-of-the-art results on multiple gesture recognition datasets, this thesis also tries to understand the behavior of multi-channel networks (a la FOANet). Multi- channel architectures are becoming increasingly common, setting the state of the art for performance in gesture recognition and other domains. Unfortunately, we lack a clear explanation of why multi-channel architectures outperform single channel ones. This thesis considers two hypotheses. The Bagging hypothesis says that multi-channel architectures succeed because they average the result of multiple unbiased weak estimators in the form of different channels. The Society of Experts (SoE) hypothesis suggests that multi-channel architectures succeed because the channels differentiate themselves, developing expertise with regard to different aspects of the data. Fusion layers then get to combine complementary information. This thesis presents two sets of experiments to distinguish between these hypotheses and both sets of experiments support the SoE hypothesis, suggesting multi-channel architectures succeed because their channels become specialized. Finally we demonstrate the practical impact of the gesture recognition techniques discussed in this thesis in the context of a sophisticated human computer interaction system. We developed a prototype system with a limited form of peer-to-peer communication in the context of blocks world. The prototype allows the users to communicate with the avatar using gestures and speech and make the avatar build virtual block structures

    Cross-Participant EEG-Based Assessment of Cognitive Workload Using Multi-Path Convolutional Recurrent Neural Networks

    Get PDF
    Applying deep learning methods to electroencephalograph (EEG) data for cognitive state assessment has yielded improvements over previous modeling methods. However, research focused on cross-participant cognitive workload modeling using these techniques is underrepresented. We study the problem of cross-participant state estimation in a non-stimulus-locked task environment, where a trained model is used to make workload estimates on a new participant who is not represented in the training set. Using experimental data from the Multi-Attribute Task Battery (MATB) environment, a variety of deep neural network models are evaluated in the trade-space of computational efficiency, model accuracy, variance and temporal specificity yielding three important contributions: (1) The performance of ensembles of individually-trained models is statistically indistinguishable from group-trained methods at most sequence lengths. These ensembles can be trained for a fraction of the computational cost compared to group-trained methods and enable simpler model updates. (2) While increasing temporal sequence length improves mean accuracy, it is not sufficient to overcome distributional dissimilarities between individuals’ EEG data, as it results in statistically significant increases in cross-participant variance. (3) Compared to all other networks evaluated, a novel convolutional-recurrent model using multi-path subnetworks and bi-directional, residual recurrent layers resulted in statistically significant increases in predictive accuracy and decreases in cross-participant variance
    • …
    corecore