7 research outputs found

    Learning Task Constraints in Operational Space Formulation

    Get PDF

    Learning Task Constraints from Demonstration for Hybrid Force/Position Control

    Full text link
    We present a novel method for learning hybrid force/position control from demonstration. We learn a dynamic constraint frame aligned to the direction of desired force using Cartesian Dynamic Movement Primitives. In contrast to approaches that utilize a fixed constraint frame, our approach easily accommodates tasks with rapidly changing task constraints over time. We activate only one degree of freedom for force control at any given time, ensuring motion is always possible orthogonal to the direction of desired force. Since we utilize demonstrated forces to learn the constraint frame, we are able to compensate for forces not detected by methods that learn only from the demonstrated kinematic motion, such as frictional forces between the end-effector and the contact surface. We additionally propose novel extensions to the Dynamic Movement Primitive (DMP) framework that encourage robust transition from free-space motion to in-contact motion in spite of environment uncertainty. We incorporate force feedback and a dynamically shifting goal to reduce forces applied to the environment and retain stable contact while enabling force control. Our methods exhibit low impact forces on contact and low steady-state tracking error.Comment: Under revie

    Constraint-aware learning of policies by demonstration

    Get PDF
    [EN] Many practical tasks in robotic systems, such as cleaning windows, writing, or grasping, are inherently constrained. Learning policies subject to constraints is a challenging problem. In this paper, we propose a method of constraint-aware learning that solves the policy learning problem using redundant robots that execute a policy that is acting in the null space of a constraint. In particular, we are interested in generalizing learned null-space policies across constraints that were not known during the training. We split the combined problem of learning constraints and policies into two: first estimating the constraint, and then estimating a null-space policy using the remaining degrees of freedom. For a linear parametrization, we provide a closed-form solution of the problem. We also define a metric for comparing the similarity of estimated constraints, which is useful to pre-process the trajectories recorded in the demonstrations. We have validated our method by learning a wiping task from human demonstration on flat surfaces and reproducing it on an unknown curved surface using a force- or torque-based controller to achieve tool alignment. We show that, despite the differences between the training and validation scenarios, we learn a policy that still provides the desired wiping motion.The author(s) disclosed receipt of the following financial support for the research, auth/orship, and/or publication of this article: This work was supported by the Spanish Ministry of Economy and the European Union (grant number DPI2016-81002-R (AEI/FEDER, UE)), the European Union Horizon 2020, as part of the project Memory of Motion - MEMMO (project ID 780684), and the Engineering and Physical Sciences Research Council, UK, as part of the Robotics and AI hub in Future AI and Robotics for Space - FAIR-SPACE (grant number EP/R026092/1), and as part of the Centre for Doctoral Training in Robotics and Autonomous Systems at Heriot-Watt University and the University of Edinburgh (grant numbers EP/L016834/1 and EP/J015040/1)Armesto, L.; Moura, J.; Ivan, V.; Erden, MS.; Sala, A.; Vijayakumar, S. (2018). Constraint-aware learning of policies by demonstration. The International Journal of Robotics Research. 37(13-14):1673-1689. https://doi.org/10.1177/0278364918784354S167316893713-14Alissandrakis, A., Nehaniv, C. L., & Dautenhahn, K. (2007). Correspondence Mapping Induced State and Action Metrics for Robotic Imitation. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 37(2), 299-307. doi:10.1109/tsmcb.2006.886947Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57(5), 469-483. doi:10.1016/j.robot.2008.10.024Armesto, L., Bosga, J., Ivan, V., & Vijayakumar, S. (2017). Efficient learning of constraints and generic null space policies. 2017 IEEE International Conference on Robotics and Automation (ICRA). doi:10.1109/icra.2017.7989181Armesto, L., Ivan, V., Moura, J., Sala, A., & Vijayakumar, S. (2017). Learning Constrained Generalizable Policies by Demonstration. Robotics: Science and Systems XIII. doi:10.15607/rss.2017.xiii.036Atkeson, C. G., Moore, A. W., & Schaal, S. (1997). Artificial Intelligence Review, 11(1/5), 75-113. doi:10.1023/a:1006511328852Baerlocher, P., & Boulic, R. (2004). An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. The Visual Computer, 20(6), 402-417. doi:10.1007/s00371-004-0244-4Calinon, S. (2015). A tutorial on task-parameterized movement learning and retrieval. Intelligent Service Robotics, 9(1), 1-29. doi:10.1007/s11370-015-0187-9Calinon, S., & Billard, A. (2007). Incremental learning of gestures by imitation in a humanoid robot. Proceeding of the ACM/IEEE international conference on Human-robot interaction - HRI ’07. doi:10.1145/1228716.1228751Cruse, H., & Brüwer, M. (1987). The human arm as a redundant manipulator: The control of path and joint angles. Biological Cybernetics, 57(1-2), 137-144. doi:10.1007/bf00318723D’Souza, A., Vijayakumar, S., & Schaal, S. (s. f.). Learning inverse kinematics. Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180). doi:10.1109/iros.2001.973374Escande, A., Mansard, N., & Wieber, P.-B. (2014). Hierarchical quadratic programming: Fast online humanoid-robot motion generation. The International Journal of Robotics Research, 33(7), 1006-1028. doi:10.1177/0278364914521306Gams, A., Nemec, B., Ijspeert, A. J., & Ude, A. (2014). Coupling Movement Primitives: Interaction With the Environment and Bimanual Tasks. IEEE Transactions on Robotics, 30(4), 816-830. doi:10.1109/tro.2014.2304775Gienger, M., Janssen, H., & Goerick, C. (s. f.). Task-oriented whole body motion for humanoid robots. 5th IEEE-RAS International Conference on Humanoid Robots, 2005. doi:10.1109/ichr.2005.1573574Herzog, A., Rotella, N., Mason, S., Grimminger, F., Schaal, S., & Righetti, L. (2015). Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid. Autonomous Robots, 40(3), 473-491. doi:10.1007/s10514-015-9476-6Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359-366. doi:10.1016/0893-6080(89)90020-8Howard, M., Klanke, S., Gienger, M., Goerick, C., & Vijayakumar, S. (2009). A novel method for learning policies from variable constraint data. Autonomous Robots, 27(2), 105-121. doi:10.1007/s10514-009-9129-8Hussein, M., Mohammed, Y., & Ali, S. A. (2015). Learning from Demonstration Using Variational Bayesian Inference. Lecture Notes in Computer Science, 371-381. doi:10.1007/978-3-319-19066-2_36Khatib, O., Sentis, L., & Park, J.-H. (s. f.). A Unified Framework for Whole-Body Humanoid Robot Control with Multiple Constraints and Contacts. European Robotics Symposium 2008, 303-312. doi:10.1007/978-3-540-78317-6_31Lin, H.-C., Howard, M., & Vijayakumar, S. (2015). Learning null space projections. 2015 IEEE International Conference on Robotics and Automation (ICRA). doi:10.1109/icra.2015.7139551Lin, H.-C., Ray, P., & Howard, M. (2017). Learning task constraints in operational space formulation. 2017 IEEE International Conference on Robotics and Automation (ICRA). doi:10.1109/icra.2017.7989039Mansard, N., & Chaumette, F. (2007). Task Sequencing for High-Level Sensor-Based Control. IEEE Transactions on Robotics, 23(1), 60-72. doi:10.1109/tro.2006.889487Moura, J., & Erden, M. S. (2017). Formulation of a Control and Path Planning Approach for a Cab front Cleaning Robot. Procedia CIRP, 59, 67-71. doi:10.1016/j.procir.2016.09.024Paraschos, A., Lioutikov, R., Peters, J., & Neumann, G. (2017). Probabilistic Prioritization of Movement Primitives. IEEE Robotics and Automation Letters, 2(4), 2294-2301. doi:10.1109/lra.2017.2725440Pastor, P., Righetti, L., Kalakrishnan, M., & Schaal, S. (2011). Online movement adaptation based on previous sensor experiences. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2011.6095059Schaal, S., & Atkeson, C. G. (1998). Constructive Incremental Learning from Only Local Information. Neural Computation, 10(8), 2047-2084. doi:10.1162/089976698300016963Schaal, S., Ijspeert, A., & Billard, A. (2003). Computational approaches to motor learning by imitation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1431), 537-547. doi:10.1098/rstb.2002.1258Shiller, Z. (2015). Off-Line and On-Line Trajectory Planning. Mechanisms and Machine Science, 29-62. doi:10.1007/978-3-319-14705-5_2Siciliano B, Sciavicco L, Villani L, et al. (2009) Differential Kinematics and Statics. London: Springer, pp. 105–160.Sugiura, H., Gienger, M., Janssen, H., & Goerick, C. (2006). Real-Time Self Collision Avoidance for Humanoids by means of Nullspace Criteria and Task Intervals. 2006 6th IEEE-RAS International Conference on Humanoid Robots. doi:10.1109/ichr.2006.321331Towell, C., Howard, M., & Vijayakumar, S. (2010). Learning nullspace policies. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2010.5650663Yoshikawa, T. (1985). Manipulability of Robotic Mechanisms. The International Journal of Robotics Research, 4(2), 3-9. doi:10.1177/027836498500400201Zhang, X.-D. (2017). Matrix Analysis and Applications. doi:10.1017/978110827758
    corecore