4 research outputs found

    Concept drift learning and its application to adaptive information filtering

    Get PDF
    Tracking the evolution of user interests is a problem instance of concept drift learning. Keeping track of multiple interest categories is a natural phenomenon as well as an interesting tracking problem because interests can emerge and diminish at different time frames. The first part of this dissertation presents a Multiple Three-Descriptor Representation (MTDR) algorithm, a novel algorithm for learning concept drift especially built for tracking the dynamics of multiple target concepts in the information filtering domain. The learning process of the algorithm combines the long-term and short-term interest (concept) models in an attempt to benefit from the strength of both models. The MTDR algorithm improves over existing concept drift learning algorithms in the domain. Being able to track multiple target concepts with a few examples poses an even more important and challenging problem because casual users tend to be reluctant to provide the examples needed, and learning from a few labeled data is generally difficult. The second part presents a computational Framework for Extending Incomplete Labeled Data Stream (FEILDS). The system modularly extends the capability of an existing concept drift learner in dealing with incomplete labeled data stream. It expands the learner's original input stream with relevant unlabeled data; the process generates a new stream with improved learnability. FEILDS employs a concept formation system for organizing its input stream into a concept (cluster) hierarchy. The system uses the concept and cluster hierarchy to identify the instance's concept and unlabeled data relevant to a concept. It also adopts the persistence assumption in temporal reasoning for inferring the relevance of concepts. Empirical evaluation indicates that FEILDS is able to improve the performance of existing learners particularly when learning from a stream with a few labeled data. Lastly, a new concept formation algorithm, one of the key components in the FEILDS architecture, is presented. The main idea is to discover intrinsic hierarchical structures regardless of the class distribution and the shape of the input stream. Experimental evaluation shows that the algorithm is relatively robust to input ordering, consistently producing a hierarchy structure of high quality

    Learning Dynamics for Robot Control under Varying Contexts

    Get PDF
    Institute of Perception, Action and BehaviourHigh fidelity, compliant robot control requires a sufficiently accurate dynamics model. Often though, it is not possible to obtain a dynamics model sufficiently accurately or at all using analytical methods. In such cases, an alternative is to learn the dynamics model from movement data. This thesis discusses the problems specific to dynamics learning for control under nonstationarity of the dynamics. We refer to the cause of the nonstationarity as the context of the dynamics. Contexts are, typically, not directly observable. For instance, the dynamics of a robot manipulator changes as the robot manipulates different objects and the physical properties of the load – the context of the dynamics – are not directly known by the controller. Other examples of contexts that affect the dynamics are changing force fields or liquids with different viscosity in which a manipulator has to operate. The learned dynamics model needs to be adapted whenever the context and therefore the dynamics changes. Inevitably, performance drops during the period of adaptation. The goal of this work, is to reuse and generalize the experience obtained by learning the dynamics of different contexts in order to adapt to changing contexts fast. We first examine the case that the dynamics may switch between a discrete, finite set of contexts and use multiple models and switching between them to adapt the controller fast. A probabilistic formulation of multiple models is used, where a discrete latent variable is used to represent the unobserved context and index the models. In comparison to previous multiple model approaches, the developed method is able to learn multiple models of nonlinear dynamics, using an appropriately modified EM algorithm. We also deal with the case when there exists a continuum of possible contexts that affect the dynamics and hence, it becomes essential to generalize from a set of experienced contexts to novel contexts. There is very little previous work on this direction and the developed methods are completely novel. We introduce a set of continuous latent variables to represent context and introduce a dynamics model that depends on this set of variables. We first examine learning and inference in such a model when there is strong prior knowledge on the relationship of these continuous latent variables to the modulation of the dynamics, e.g., when the load at the end effector changes. We also develop methods for the case that there is no such knowledge available. Finally, we formulate a dynamics model whose input is augmented with observed variables that convey contextual information indirectly, e.g., the information from tactile sensors at the interface between the load and the arm. This approach also allows generalization to not previously seen contexts and is applicable when the nature of the context is not known. In addition, we show that use of such a model is possible even when special sensory input is not available by using an instance of an autoregressive model. The developed methods are tested on realistic, full physics simulations of robot arm systems including a simplistic 3 degree of freedom (DOF) arm and a simulation of the 7 DOF DLR light weight robot arm. In the experiments, varying contexts are different manipulated objects. Nevertheless, the developed methods (with the exception of the methods that require prior knowledge on the relationship of the context to the modulation of the dynamics) are more generally applicable and could be used to deal with different context variation scenarios

    Concept drift learning and its application to adaptive information filtering

    Get PDF
    Tracking the evolution of user interests is a problem instance of concept drift learning. Keeping track of multiple interest categories is a natural phenomenon as well as an interesting tracking problem because interests can emerge and diminish at different time frames. The first part of this dissertation presents a Multiple Three-Descriptor Representation (MTDR) algorithm, a novel algorithm for learning concept drift especially built for tracking the dynamics of multiple target concepts in the information filtering domain. The learning process of the algorithm combines the long-term and short-term interest (concept) models in an attempt to benefit from the strength of both models. The MTDR algorithm improves over existing concept drift learning algorithms in the domain. Being able to track multiple target concepts with a few examples poses an even more important and challenging problem because casual users tend to be reluctant to provide the examples needed, and learning from a few labeled data is generally difficult. The second part presents a computational Framework for Extending Incomplete Labeled Data Stream (FEILDS). The system modularly extends the capability of an existing concept drift learner in dealing with incomplete labeled data stream. It expands the learner's original input stream with relevant unlabeled data; the process generates a new stream with improved learnability. FEILDS employs a concept formation system for organizing its input stream into a concept (cluster) hierarchy. The system uses the concept and cluster hierarchy to identify the instance's concept and unlabeled data relevant to a concept. It also adopts the persistence assumption in temporal reasoning for inferring the relevance of concepts. Empirical evaluation indicates that FEILDS is able to improve the performance of existing learners particularly when learning from a stream with a few labeled data. Lastly, a new concept formation algorithm, one of the key components in the FEILDS architecture, is presented. The main idea is to discover intrinsic hierarchical structures regardless of the class distribution and the shape of the input stream. Experimental evaluation shows that the algorithm is relatively robust to input ordering, consistently producing a hierarchy structure of high quality

    Learning Stable Concepts in a Changing World

    No full text
    Concept drift due to hidden changes in context complicates learning in many domains including financial prediction, medical diagnosis, and network performance. Existing machine learning approaches to this problem use an incremental learning, on-line paradigm. Batch, off-line learners tend to be ineffective in domains with hidden changes in context as they assume that the training set is homogeneous. We present an off-line method for identifying hidden context. This method uses an existing batch learner to identify likely context boundaries then performs a form of clustering called contextual clustering. The resulting data sets can then be used to produce context specific, locally stable concepts. The method is evaluated in a simple domain with hidden changes in context. 1 INTRODUCTION Prediction in real world domains is complicated by potentially unstable underlying phenomena. In the financial domain, for example, market behaviour can change dramatically with changes in contract price..
    corecore