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Abstract
High fidelity, compliant robot control requires a sufficiently accurate dynamics

model. Often though, it is not possible to obtain a dynamics model sufficiently ac-
curately or at all using analytical methods. In such cases, an alternative is to learn the
dynamics model from movement data. This thesis discusses the problems specific to
dynamics learning for control under nonstationarity of the dynamics.

We refer to the cause of the nonstationarity as the context of the dynamics. Contexts
are, typically, not directly observable. For instance, the dynamics of a robot manipu-
lator changes as the robot manipulates different objects and the physical properties of
the load – the context of the dynamics – are not directly known by the controller. Other
examples of contexts that affect the dynamics are changing force fields or liquids with
different viscosity in which a manipulator has to operate.

The learned dynamics model needs to be adapted whenever the context and there-
fore the dynamics changes. Inevitably, performance drops during the period of adap-
tation. The goal of this work, is to reuse and generalize the experience obtained by
learning the dynamics of different contexts in order to adapt to changing contexts fast.

We first examine the case that the dynamics may switch between a discrete, fi-
nite set of contexts and use multiple models and switching between them to adapt the
controller fast. A probabilistic formulation of multiple models is used, where a dis-
crete latent variable is used to represent the unobserved context and index the models.
In comparison to previous multiple model approaches, the developed method is able
to learn multiple models of nonlinear dynamics, using an appropriately modified EM
algorithm.

We also deal with the case when there exists a continuum of possible contexts that
affect the dynamics and hence, it becomes essential to generalize from a set of expe-
rienced contexts to novel contexts. There is very little previous work on this direction
and the developed methods are completely novel. We introduce a set of continuous
latent variables to represent context and introduce a dynamics model that depends on
this set of variables. We first examine learning and inference in such a model when
there is strong prior knowledge on the relationship of these continuous latent variables
to the modulation of the dynamics, e.g., when the load at the end effector changes. We
also develop methods for the case that there is no such knowledge available.

Finally, we formulate a dynamics model whose input is augmented with observed
variables that convey contextual information indirectly, e.g., the information from tac-
tile sensors at the interface between the load and the arm. This approach also allows
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generalization to not previously seen contexts and is applicable when the nature of the
context is not known. In addition, we show that use of such a model is possible even
when special sensory input is not available by using an instance of an autoregressive
model.

The developed methods are tested on realistic, full physics simulations of robot
arm systems including a simplistic 3 degree of freedom (DOF) arm and a simulation
of the 7 DOF DLR light weight robot arm. In the experiments, varying contexts are
different manipulated objects. Nevertheless, the developed methods (with the excep-
tion of the methods that require prior knowledge on the relationship of the context to
the modulation of the dynamics) are more generally applicable and could be used to
deal with different context variation scenarios.
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Chapter 1

Introduction

Movement execution is a crucial skill in both biological (e.g. humans) and artificial
(e.g. robots) embodied systems. The importance of the ability to generate movement
is highlighted by the fact that movement is essentially the only means that we have
to interact with the world (Wolpert et al., 2001). Humans and other biological sys-
tems exhibit high levels of robustness and flexibility in controlling their motor system
under varying conditions. It is the holy grail of robotics to achieve similar levels of
adaptability.

One of the key ingredients in fast, adaptive motor control is the ability to predict
the consequences of one’s actions and then adapt to novel or unexperienced dynamics.
This work focuses on developing such ability in complex, anthropomorphic robotic
manipulators. In particular, it examines the problem of dynamics learning for control
of robot manipulators under nonstationary conditions. Three concepts are central to
this study: control, dynamics learning and nonstationarity. While we defer in depth
discussion of these topics till later, here, we attempt to briefly introduce these topics
and motivate the key questions and contributions of this work.

Control, in the context of movement execution, can be defined as the problem of
transforming a desired movement task into actual movement. This involves sending the
appropriate signals to the actuators of the system (typically electric or hydraulic motors
for robots) in order to realize the desired movement. Predictive control methods that
can achieve fast and compliant movement require an accurate dynamics model of the
system. In general, prior knowledge of the structure and the physical properties of the
robot can be used to analytically derive a dynamic model. Nevertheless, in many cases,
accurate analytical modeling of the dynamics may not be feasible. Possible reasons
could be the complexity of the dynamics, i.e. the existence of unmodeled effects (e.g.
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2 Chapter 1. Introduction

friction can be very hard to model) or inaccurate knowledge of some parameters or
even complete lack of knowledge of the structure of the dynamics or the parameters. If
acquiring an accurate dynamics model of the system is not possible analytically, then
an alternative is to learn it, i.e. approach it using sensed movement data. Learning
dynamics models for control is a much studied field (Baker and Farrell, 1992; Hunt
et al., 1992; Atkeson et al., 1997; Vijayakumar et al., 2002).

This work focuses on the problems that nonstationarity of dynamics poses to dy-
namics learning for control. Nonstationarity can be caused either by interaction with
different environments or by internal changes to the system itself. An example of in-
teraction with a varying environment for a robot manipulator could be manipulation of
different loads: different loads change the dynamics of the manipulator. An example of
nonstationarity caused by an internal change to the system could be change of friction
due to wear and tear or failure of parts. The cause of nonstationarity will be referred
to as the context of the dynamics, i.e. the context is a varying factor that modulates
the dynamics. In general, the context is not directly observed; only the effect of the
context on the dynamics or some affected sensory input is observed. For example, the
physical properties of the load are not known, however, the observed behaviour of the
robot conveys information about the load. Other examples of unobserved contexts that
affect the dynamics could be changing force fields or liquids with different viscosity
in which a manipulator has to operate. In this work, experiments will be conducted
for the case that modulation of the dynamics is due to manipulation of different ob-
jects. However, most of the methods that will be developed will be applicable to other
context variations as well.

Nonstationarity affects control performance as well as the very process of learn-
ing of dynamics. The dynamics model that is learned and used for control needs to
be adapted every time the dynamics changes to ensure accurate performance. For ex-
ample, if a model of the robot that is not carrying a load is learned and consequently
the robot grasps a heavy object, there will be significant tracking errors. Adapting the
model online is possible, however, performance will inevitably be low during the pe-
riod of adaptation. In this study, we examine ways to improve the control performance
by reusing the knowledge obtained by learning previously experienced dynamics (con-
texts).

We consider two classes of nonstationary behaviour and treating these are the two
main goals of this work.

• In the first, the dynamics may switch between a finite set of contexts.
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• In the second, more complicated scenario, there is a continuum of possible con-
texts.

In the discrete context case, a solution is to learn a set of models, each of which is
appropriate for a different context and switch between them as required. This allows
for fast adaptation of the model that is used for control and greatly improves control
performance. This multiple model approach is not new to motor learning and control
(Gomi and Kawato, 1993; Cacciatore and Nowlan, 1994; Wolpert and Kawato, 1998;
Haruno et al., 2001). Nevertheless, existing methods do not allow learning of nonlinear
dynamics. We will formulate a multiple model paradigm that is able to learn models of
nonlinear dynamics in a principled probabilistic way. The use of probabilistic methods
will be useful in order to take into account uncertainties in the learned models prop-
erly. A graphical model representation of the multiple model system where a discrete
hidden variable indexing the set of dynamics models will be used. Furthermore, we
require to learn complicated nonlinear dynamics in high dimensional spaces and an
appropriate regression algorithm needs to be used. Using probabilistic methods and a
robust nonlinear regression algorithm, we will demonstrate that it is possible to learn
multiple models of nonstationary nonlinear dynamics.

In the scenario of continuous range of potential contexts, the use of a finite set of
models may not be viable. Nevertheless, the experience gained by learning the dy-
namics in previously seen contexts can be used to generalize to novel contexts. To the
best of our knowledge, there is no previous work on principled ways of generalizing
learned dynamics from an observed set of contexts to novel contexts. In some of the
multiple model approaches (Wolpert and Kawato, 1998; Haruno et al., 2001), a linear
combination of the predictions of the individual models (with weights given by the
responsibility signal of each model) is used, however, no justification for doing this is
provided. Two possible cases will be examined. In the first case the nature of the con-
text and its relationship to the modulation of the dynamics is known. It is shown that
when nonstationarity is caused by varying loads, it is possible to use such prior knowl-
edge and generalize learned dynamics from experienced contexts to novel contexts as
well. The method proposed for this scenario is related to classical load identification
methods (Swevers et al., 2002, 2000; Dutkiewicz et al., 1993a). However, it differs in
the fact that learned, instead of analytical, dynamics models are used. The probabilistic
model that was proposed in the discrete case is reformulated in order to handle con-
texts that have a continuous rather than discrete range. A continuous latent variable is
introduced to represent the context and the resulting model is similar to a linear state-
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space model. Experiments indicate that very accurate estimates of the context can be
obtained using this formulation and very high control performance can be achieved. In
the second case, knowledge on the nature of the context and the way it modulates the
dynamics is not available. A further reformulation of the aforementioned state-space
model is suggested, which results in a nonlinear state-space model. Learning of such
a model is considerably more difficult given that the relationship of the context to the
dynamics may be arbitrary. Nevertheless, promising experimental results are obtained
and satisfactory performance is achieved.

In both the scenarios of a finite and infinite number of contexts, the context needs
to be inferred. Another completely novel approach that we suggest in this thesis is to
use a dynamics model whose input is augmented with observed variables that convey
information about the context indirectly. Then, no estimation of the context needs to
be performed and also generalization to novel contexts can be achieved, with the ad-
ditional advantage that knowledge of the nature of the context is not required. For ex-
ample, in the scenario of different manipulated objects, tactile sensing at the interface
between the arm and the load provides information about the properties of the object
in an indirect way. It is demonstrated that this strategy is applicable even when special
sensory input – like tactile – is not available, by using time delayed observed dynamics
states and inputs as additional variables, similarly to an autoregressive model.

It is necessary to clarify the relevance of this work to biological motor control
(Shadmehr and Wise, 2005), a field with similar goals as the field of robot control.
(Schaal and Schweighofer, 2005) discusses some of the common concepts between
robot control and biological motor control and points out that it is not always clear
if the methods and notions of one field are applicable or meaningful in the other. In
this work, the focus is on robot control rather than biological motor control. However,
when there is a known analogy, it will be mentioned and we hope that the ideas and
models developed in this thesis could be useful for biological motor control as well.

1.1 Outline of this thesis

The rest of the thesis is organized as described below. Details of relevant publications
are included.
Chapter 2 gives a more detailed background on robot control, dynamics learning and
previous approaches for dealing with nonstationarity in the fields of control and ma-
chine learning.



1.1. Outline of this thesis 5

Chapter 3 discusses learning a dynamics model of a robot arm with stationary dynam-
ics and using it for control. Also, the effects of nonstationarity on dynamics learning
and control are briefly demonstrated.
Chapter 4 discusses the use of a set of models for dealing with a discrete number of
contexts. Existing multiple model methods are discussed and a new formulation that
deals with some of their problems is presented.

• International Conference on Artificial Neural Networks (ICANN), 2006 (Petkos
et al., 2006)

Chapter 5 discusses the disadvantages of the multiple model scenario and introduces
an alternative single model formulation augmented with unobserved continuous con-
textual variables.

• IEEE International Conference on Robotics and Automation (ICRA), 2007
(Petkos and Vijayakumar, 2007a)

• IEEE International Conference on Intelligent Robots and Systems (IROS), 2007
(Petkos and Vijayakumar, 2007b)

• International Conference on Informatics in Control, Automation and Robotics
(ICINCO), 2007 (Hoffmann et al., 2007)

Chapter 6 discusses learning an augmented model that takes additional input sensed
variables that convey contextual information indirectly.
Chapter 7 concludes and gives suggestions for further research.





Chapter 2

Background

This chapter gives some background on robot control, dynamics learning and the prob-
lem of nonstationarity from the perspectives of control (adaptive control) and machine
learning.

2.1 Robot control

There are two classes of robot control methods, direct and indirect control. Indirect
control, involves two independent stages:

• Movement planning, is the task of generating a representation of the desired mo-
tion of the system. Plans are expressed either in terms of joint angles or displace-
ments (for revolute and prismatic joints respectively) or in terms of end-effector
position and possibly orientation. The plan is represented either as a differential
equation or a time indexed sequence of states θd1, θd2 ... θdT between the current
state of the system and some desired end state. The desired end state or task
could come from some higher level planning or “cognitive” process or from a
human demonstrator. Movement planning is often performed by optimizing a
cost criterion, e.g. kinematic smoothness of the movement; this is the field of
optimal control (Jordan and Wolpert, 1999; Todorov, 2006; Stengel, 1994).

• Plan execution, is the task of realizing the planned motion by sending appropri-
ate motor commands to the actuators of the system. Depending on the particular
architecture or hardware, the actuators may be commanded in terms of e.g. volt-
age applied on a DC motor or in terms of the torque (if the joint is revolute) or
force (if the joint is prismatic) that the actuator applies on the joint.

7
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This two stage process is depicted in Fig. 2.1.

ControllerPlanner

Control 

commands

Movement

system

Sequence of 

desired states

State feedback

Figure 2.1: Indirect control: motor control involves two stages, planning and plan exe-
cution.

In direct control on the other hand, planning and computation of commands are not
done independently. That is, no explicit plan is created independently to the compu-
tation of commands. A cost function that depends on both the state of the system and
the applied commands is used and is optimized in order to obtain a sequence of states
and commands. Since this approach utilizes optimization of a cost function for control
problem, it also falls in the field of optimal control. The direct control approach is
displayed in Fig. 2.2.

Figure 2.2: Direct control: motor control does not involve an independent planning
stage. Planning rather happens in the controller as part of an optimization process.

Applied commands are always issued in terms of actuator coordinates. Neverthe-
less, plans can be either represented in joint coordinates or end-effector coordinates.
If the desired trajectory is presented to the controller in terms of joint states, a joint
space controller is used. If on the other hand, the desired trajectory is presented
as a sequence of end-effector states, this is an operational space control problem,
which is in general more difficult. The most common approach is to first solve the
inverse kinematics problem, mapping the planned trajectory in operational space to
another trajectory in joint space and then use a joint space controller. This is depicted
in Fig. 2.3.
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Figure 2.3: Transforming a planned trajectory from end-effector states to joint angle
states.

Another option is to use a control law that directly maps plans in operational space
to actuator commands, e.g. using the inverse of the Jacobian matrix (Sciavicco and
Siciliano, 2000). It must also be stressed that redundant degrees of freedom is an issue
that needs to be taken into account when transforming a plan from operational space
to joint angle space or when using a pure operational space controller. That is, when
there are more degrees of freedom to execute a required task in operational space, the
task can be completed in different ways and it may be desired to resolve between these.

Depending on the application requirements, representation of the desired trajectory,
knowledge of the dynamics of the robot and hardware, the control problem varies
significantly. For example, if the application goal is just to set the manipulator to
some fixed posture, this is a position control problem. If the task is to execute some
movement, without any interaction between the robot and it’s environment, this is a
motion control problem. If it is required to interact with the environment and the task
is e.g. to apply some specific force on some surface or object, this is a force control
problem.

Most importantly, controllers are characterized as open loop or closed loop, which
are also known as feedback controllers (Ogata, 2001). In open loop control (Fig. 2.4)
there is no feedback from the movement system to the controller: the controller as-
sumes that the system is in its desired state and computes the command that will drive
the system to the next desired state. Open loop controllers are not robust to distur-
bances or system uncertainties. A closed loop controller uses some measurement of
the state of the system. In practice some form of feedback is almost always required
as in most cases there will be disturbances or uncertainties. One of the most common
closed loop controllers is the non-model based feedback controller that is displayed in
Fig. 2.5. This uses the sensors of the system to measure or estimate the actual state
of the robot θt and compares it with the desired state of the robot θdt . It then uses the
error et and computes the next command to the robot as a simple function of the error.
The most common feedback controller is the Proportional Integral Derivative (PID)
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controller that computes the next control command τt as:

τt = Kpet +Ki
∫

etdt+Kd
de
dt

(2.1)

Controlled
object

output
Desired 

output
Actual

model
command

Feedforward

Inverse

Figure 2.4: An open loop feedforward controller.

ControlledGains
object

output command
Feedback Desired 

+

−

output
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Delay

Figure 2.5: A pure feedback controller.

Kp, Ki and Kd are the proportional, integral and derivative gains respectively. Other
variants, like the P, PI or PD controller, using only the corresponding terms, are also
common. The advantage of these controllers is that they do not require a model of
the system’s dynamics. However, a PID controller will not provide a command unless
there is some error to correct and therefore tracking of the desired trajectory will not
be perfect. In addition, there are in many cases feedback delays that may lead to
inaccurate computation of the error. Then, the applied feedback command may not be
appropriate for controlling the system and could reduce tracking performance, instead
of improving it. Feedback delays are usually quite low in most artificial systems,
but can play a significant role in biological motor control systems. Furthermore, in
many cases, in order to achieve relatively good tracking performance, the gains have
to be set to high values, something that results in potentially dangerous non-compliant
movement, that could cause the manipulator to damage its environment if it comes in
contact with it (Wolpert and Ghahramani, 2000).

High fidelity, compliant robot control requires a sufficiently accurate dynamics
model. The dynamics of a robot manipulator is expressed as a second order nonlin-
ear differential equation. The inputs to the system are generally the torques or forces
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applied at the joints and the outputs are most commonly the joint angles or displace-
ments. An operational space formulation of the dynamics model where the output of
the differential equation is the position and orientation of the end-effector is possible
but not common. In the common joint space form, assuming only rotational joints, the
dynamics model is:

τ= B(q)q̈+C(q, q̇)q̇+g(q) (2.2)

Here, τ is the vector of torques applied at the joints, q, q̇ and q̈ are the vectors of
joint angles, velocities and accelerations respectively, B is called the inertia matrix,
C is a matrix that accounts for Coriolis and centrifugal forces and g is a vector of
gravitational forces. All B, C and g are nonlinear functions of the joint states. For
example, the expressions for B and g involve the Jacobian of each link – which depend
nonlinearly on the joint angles up to that link – and the expression for C involves the
derivatives of elements of B with respect to the joint angles. Friction effects can also
be easily included in the model. Static friction can be modeled by including the term
−Fs sgn(q̇) and viscous friction can be included by including the term −Fuq̇ on the
left hand side of (2.2). Fs and Fu are diagonal matrices with the static and viscous
friction coefficients respectively. More details about the analytical dynamics of a robot
manipulator can be found in (Sciavicco and Siciliano, 2000; Craig, 2005; Spong et al.,
2006; Kelly et al., 2005)

Typically, discrete time approximations are used to compute with the dynamics
model (e.g. with a small time step t = α) as:

τt = B̄(qt)q̈t+α+C̄(qt , q̇t)q̇t + ḡ(qt) (2.3)

(2.3) represents the inverse dynamics model, i.e. given that the manipulator is in the
state represented by the vectors of joint angles and velocities qt , q̇t , the inverse dynam-
ics model gives the torque that needs to be applied from time t until t+α so that an
acceleration of q̈t+α is achieved. The next state qt+α and q̇t+α can be obtained by qt ,q̇t
and q̈t+α by integrating. The matrices B̄, C̄ and ḡ are the discrete time approximations
of B, C and g respectively.

Grouping the state variables at time t, qt and q̇t in a single state variable θt , the
inverse model can be represented in a more compact form as:

τt = g(θt ,θt+1) (2.4)

where θt+1 denotes the at time t+1. This state-space representation will often be used
for brevity.
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The inverse dynamics model is most commonly useful for control but can be useful
for planning also. The dynamics of the system is also commonly represented in terms
of a forward model. The forward dynamics model maps the state of the system and
applied command (input to the dynamical system) to the state that it will end up in at
the next time step. Formally, the forward model is:

θt+1 = g(θt ,τt) (2.5)

The forward dynamics model can be retrieved from (2.2) by solving for q̈ as:

q̈= B(q)−1(τ−C(q, q̇)q̇−g(q)) (2.6)

A graphical model representation (Bishop, 2006) of the forward and inverse model can
be seen in Fig. 2.6 (a) and (b) respectively.

τt

θt θt+1

τt

θt θt+1

(a) (b)

Figure 2.6: Graphical model representation of (a) the forward model (b) the inverse
model.

Each node in a graphical model represents a random variable. Each variable has
a probability distribution assigned to it. If the node for a variable has parents (nodes
pointing to it), then the probability distribution is conditioned on the parent variables.
For example, in Fig. 2.6 (a), the distribution of θt+1 is conditioned on θt and τt , i.e.
it is p(θt+1|θt ,τt). The graphical model represents the joint probability distribution of
the variables as the product of the probability distribution of the individual variables.
Furthermore, shaded nodes represent variables that are observed, whereas nodes that
are not shaded represent variables that are not observed. These graphical models have
only observed variables but we will later develop and use instances of graphical models
with hidden variables.

The inverse model can be used in many control settings. The simplest is as part
of an open loop controller, ignoring the actual state of the system and applying a pure
“feedforward” command as displayed in Fig. 2.4, i.e. the following control law is used:

τt = B(qdt )q̈
d
t+1 +C(qdt , q̇

d
t )q̇

d
t +g(qdt ) (2.7)



2.1. Robot control 13

or equivalently in the state-space representation:

τt = g(θdt ,θ
d
t+1) (2.8)

As discussed, open loop control is in almost all cases not an option as it is very
sensitive to disturbances and system uncertainties.

Controlled
object

+

−
Gains

Inverse
model

outputoutput
Desired 

command
Feedback 

Feedforward
command

Actual

Delay

Figure 2.7: A composite controller.

A common type of model based closed loop controller is the composite controller
(Fig. 2.7) (Jordan, 1996), which is also known as “PD plus feedforward” (Kelly et al.,
2005). A composite controller consists of a feedforward part based on the inverse
model of the system and a feedback part, a PD controller. If the inverse model of the
system is accurate and there are no disturbances, then the errors will be small and the
error-correcting feedback part of the controller will be mostly inactive.

Given a discrete time plan θd1,θ
d
2...θ

d
T , the composite control law is expressed as:

τt = g(θdt ,θ
d
t+1)+Kpet +Kd

de
dt

(2.9)

which is simply the open loop controller of (2.8) with additional PD terms. The more
accurate the inverse model is, the lower the feedback component of the command will
be, i.e., the magnitude of the feedback command can be used as a measure of the
accuracy of the inverse model. Furthermore, good predictive models allow the use
of low feedback gains, resulting in a highly compliant system without sacrificing the
speed and accuracy of the movements.

There are many more controllers for motion control of robot manipulators, with one
of the most important being the computed torque control law (for a comprehensive
study see (Kelly et al., 2005)). The computed torque control law is given by:

τ= B(q)[q̈d +Kp(qd−q)+Kd(q̇q− q̇)]+C(q, q̇)q̇+g(q) (2.10)
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The composite controller will be used in this thesis because of its favorable proper-
ties that were mentioned. Furthermore, it is one of the few controllers that allow use of
a learned instead of an analytically derived model. Controllers that do not allow the use
of a learned dynamics model are the ones that require computation of the individual
terms B(q), C(q, q̇) or g(q), as a learned dynamics model does not provide these. The
computed torque controller also allows use of a learned dynamics model, however, it
does not have the error-correcting properties that the composite controller has since the
error is not directly corrected by the feedback loop. Furthermore, the computed torque
law is very sensitive to modeling errors that will inevitably be present at least in the
initial phases of training.

Reference should also be made to classic control theory (Franklin et al., 1993).
The subject of classical control theory is how to determine the behaviour of dynamical
systems by setting its inputs (commands). An important requirement for a control
system is stability. There are various definitions of stability of a dynamical system
(Slotine and Li, 1991; Kelly et al., 2005). For example, it is desired that the controlled
system exhibits asymptotic stability (Slotine and Li, 1991; Kelly et al., 2005). This
means that the differential equation that describes the dynamics of the tracking error
et = θdt −θt is computed and it is required that this differential equation converges to
a single stable point which is the origin of the error state-space i.e. zero error and zero
error velocity. A complete treatment of any control system should in principle involve
stability analysis. However, stability analysis is often very difficult, in particular in
cases of learning nonlinear dynamics with complicated regression algorithms. When
possible, we will make empirical comments on the stability of the methods that will
be developed, based on experiments. Thus, we will rather use a qualitative definition
of stability: a control system is called stable if starting from small tracking error, the
error stays small.

2.2 Motor learning

It is often the case that an accurate model of the robots’s dynamics is not easy or
possible to obtain analytically. A reason may be that the dynamics of the system is
too complicated to derive analytically and important factors are omitted. For example,
the dynamics of robot manipulators is usually based on the assumption of rigid links
and joints. However, there may be non-rigid body effects due to elasticity of the links.
Even though non-rigid body effects may be important, they are usually ignored since
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they are hard to model. Another reason may be that some parameters of the system are
not known accurately or at all. In the case of robot manipulators, this could include
kinematic (e.g. link lengths or angles of rotation axes), dynamic (e.g. link masses,
positions of centers of mass etc.), friction or elasticity parameters. When accurate
derivation is not possible, learning the dynamics from movement data is an attractive
alternative. The problem of learning dynamics, is essentially a problem of function
approximation and a multitude of regression algorithms can be used. However, it is
necessary to use an algorithm that is able to learn nonlinear models, since the dynamics
of manipulators is in general highly nonlinear and it is also desirable to use an online
algorithm.

It should also be noted that in the engineering language, learning the dynamics
of a system from data is called system identification. The term learning instead of
identification of dynamics will be used in order to make a connection with the modern
statistical machine learning techniques that will be used.

There are three main approaches for learning dynamics: direct inverse learning,
feedback error learning and distal supervised learning (Jordan and Wolpert, 1999).
These are discussed next.

2.2.1 Direct inverse learning

Typically, in robotic systems with proprioceptive and torque sensing, at each time step
t a state transition and an applied torque signal summarized in the triplet (θt ,θt+1,τt)

are observed, i.e., we have access to the true applied control command and the state
transition. In direct inverse learning different test commands are applied to the actua-
tors of the robot, the actual state transitions are observed and are subsequently used as
training data for learning the inverse dynamics model.

Data collection is an issue with direct inverse learning. Exhaustive data genera-
tion is only possible for low-dimensional nonlinear regression problems and is thus
not a realistic option for any interesting robotic system. Another option is to use an
incompletely or coarsely trained model to control the system and collect training data.
Nevertheless, it is possible that the data collection process stays in a limited area of the
input space that may not be relevant for a specific task.
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2.2.2 Feedback error learning

Another approach is feedback error learning (Kawato et al., 1987). Contrary to di-
rect inverse learning, the actual observed movement data are not used for training the
dynamics model in feedback error learning. Feedback error learning requires a com-
posite controller and the training data for the dynamics model are the desired state
transitions and the applied composite command. However, the error-correcting prop-
erties of the composite controller should tend to bring the model to the desired states
and eventually, the commands produced by the composite controller will be close to
the commands that are actually required to produce the desired movement.

The benefit of feedback error control is that – contrary to direct inverse learning –
it is goal directed. The error-correcting feedback part of the controller will guide the
system to eventually sample data in the area that is required to execute some specific
movement. However, given that incorrect training data is at least initially used for
training the inverse model, the control command applied by the inverse model will be
inaccurate and thus convergence to the actual desired trajectory may be slow. Conver-
gence would depend on the form of the learned model, the complexity of the actual
dynamics that needs to be learned and the selection of feedback gains.

The use of feedback error learning will not be considered further in this work.
However, – as already discussed – given the benefits of the error-correcting composite
controller, a composite controller will be used, but the actual movement data will be
used for training instead. That is, direct inverse learning with a composite controller
will be utilized.

2.2.3 Distal supervised learning

Another approach for inverse dynamics learning is distal supervised learning (Jordan
and Rumelhart, 1992). Distal supervised learning is useful for problems where explicit
training data is not easy to obtain and also for learning ill-posed inverse problems. An
example of such a problem would be a redundantly actuated arm, i.e. an arm that has
more that one actuator at some joint. The actuators could actually be commanded in
an infinite number of different ways, so that the same net torque is produced, however,
the average of different solutions may not be a solution, i.e. the solution space may
not be convex. In a case like this, direct inverse learning would learn the average of
solutions and would probably result in no proper solution. Distal supervised learning
deals with this problem by first learning a forward model – which is in any case not
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ill-defined – and using this in conjunction with the learned inverse model to obtain an
identity mapping and resolve between inverse solutions.

2.3 Nonstationarity

The dynamics of the system to be controlled does not usually change through time,
i.e. it is stationary. For learning purposes, this means that the learned dynamics model
remains roughly valid (as long as it has been sufficiently well learned). However, in
many real world applications the dynamics changes, it exhibits nonstationarity. This
could be the result of interaction with different environments or objects. For example,
the dynamics of a robot manipulator changes as it manipulates objects with different
physical properties. Another source of nonstationarity is natural wear and tear, for
example joint friction may change after long periods of time.

Since an accurate model of the system’s dynamics is important for control, non-
stationarity should be taken into account in a learning dynamics for control scenario.
In principle, any online learning algorithm can deal with nonstationarity. However,
the adaptation period can be long. At this point we need to distinguish between two
cases of nonstationarity. One is when the change in dynamics is not reversible, this is
usually the case of nonstationarity due to wear and tear. The other is when the change
is reversible and the dynamics may switch back and forth, e.g. in the case of a manip-
ulator handling a series of tools to execute different tasks. We focus on the latter case:
readapting every time the dynamics changes is an inefficient and suboptimal strategy,
since the same models may be learned and unlearned all the time. It is possible to learn
the new dynamics every time it occurs, however it is clear that the knowledge obtained
previously can be reused, instead of discarded and that this could increase the control
performance considerably.

The factors that affect the dynamics of the system are as mentioned before the
context of the dynamics. In general, the context is not directly observed, e.g. in the
example of varying loads, the mass and the inertial properties of the manipulated object
are not known. If they were known, say if a measurement had taken place before the
manipulation of the load, the problem would be relatively straightforward. In most
cases even the nature of the context may not be known, i.e. nonstationary may be
observed but the nature of the factor that affects the dynamics may not be known. In
the rest of this section, existing approaches for dealing with nonstationarity in the fields
of control and machine learning will be reviewed.
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2.3.1 Adaptive control

The field of adaptive control (Narendra and Annaswamy, 1989; Åström and Witten-
mark, 1994; Dumont and Huzmezan, 2002) studies the control of systems with un-
known or changing dynamics, i.e. systems with uncertain dynamics.

There are two main classes of adaptive controllers: Model Reference Adaptive Con-
trollers (MRAC) and Self-tuning controllers (ST).

In MRAC (Fig. 2.8), a reference model that describes the desired response of the
controlled system to the input is defined. The controller is updated in order to best
match the actual system behaviour to the output of the reference model. Update is
performed using say gradient descent on the controller parameters, e.g. the PD gains
and requires knowledge of the structure of the model. No explicit modeling of the
dynamics is performed. MRAC is not appropriate for this study, since no knowledge
of the structure of the model of the system is assumed to be available, the dynamics is
learned from a naive state.

Figure 2.8: Model reference adaptive control.

MRAC is characterized as a direct adaptive control method, as it directly adapts
the controller parameters.

Contrary to MRAC, in ST (Fig. 2.9) a model of the system is explicitly estimated.
The parameters of the controller are set according to the model estimate. The con-
troller uses the model estimate as if it represents the actual system. This is called the
“certainty equivalence principle”. Essentially any identification method can be used to
obtain a model of the dynamics. There is a multitude of different ST models, according
to the method used to identify the dynamics and adjusting the controller according to
the identified model.

In the most common case, the identified system model is linear and it is used in
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conjunction with linear control techniques. For example, an estimate of the linear dy-
namics of the system can be obtained by recursive least squares and using the estimated
model one could set the gains of a PID controller, using say pole placement (Ogata,
2001) or use the estimated model as part of a composite controller. There are studies on
the convergence and stability properties of ST control of linear systems using different
estimation and control techniques (Åström and Wittenmark, 1994).

In this work the dynamics models will be explicitly estimated and the learned dy-
namics model will be used as part of a composite controller. Therefore, this learning
control approach can also be classified as a ST control method.

Figure 2.9: Self-tuning control.

Gain scheduling is another control technique that should be mentioned. Gain
scheduling is sometimes classified as an adaptive control technique and sometimes not.
In gain scheduling, a set of simple – typically linear – controllers is maintained and the
system is controlled by switching or by mixing the parameters of the set of controllers.
Mixing or switching is performed based on a set of measured variables that are called
scheduling variables. Gain scheduling has been extensively used in flight control and
is usually highly engineered, i.e. a lot of effort and system dependent knowledge is put
into determining the scheduling variables and the way these determine the controller
parameters. The use of a set of models (or controller parameters) is reminiscent of
the multiple model approach that will be discussed in Chapter 4. The difference is
that the multiple model approach does not rely on the existence of explicit schedul-
ing variables, instead it tries to identify the most appropriate model or models using
the observed dynamics. Also gain scheduling, does not typically attempt to deal with
nonstationary dynamics but with different operating regions.
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2.3.2 Supervised learning approaches to nonstationarity

There are various approaches for dealing with nonstationary problems in supervised
learning. It should first be noted that most online regression algorithms should be
appropriate for nonstationary regression problems, as one of the motivations for online
learning is dealing with nonstationarity (the other being to discard bulky data). Thus,
any online learning algorithm could in general be used to identify the system model in
a self-tuning regulator and could deal with nonstationary dynamics. For example, one
could use a multilayer perceptron neural network that is trained with online gradient
descent. However, online learning with multilayer perceptrons is prone to the problem
of negative interference, i.e. presenting data in a new part of the input space (something
that is quite common in the dynamics learning scenario) can degrade the performance
of the learner in another part of the space where data has been seen and well fitted
previously. Local learning algorithms – i.e. algorithms that use a set of local models
that account for different areas of the input space – do not have this problem and are
thus suitable for learning dynamics.

Furthermore, there are ways to improve the performance of online learning al-
gorithms under nonstationary contexts (Murata et al., 1996): once nonstationarity is
detected, the learning or forgetting rate of the specific learning algorithm can be tuned
in order to more rapidly forget the previously seen data and learn the new. This essen-
tially increases the learning rate when the error is large and decreases it when the error
is small. When local learning algorithms are used, adapting learning rates would help
to adapt each local model faster. However, in order to adapt the whole model (the set
of local models), we would have to explore all areas in the input space model.

There is a large amount of work on “switching regression” problems, i.e. regression
problems where the data generator switches between a set of different modes. This also
related to the problem of multimodal regression, i.e. regression problems with more
than one response, a common phenomenon in the so called inverse problems. An ex-
ample of such a problem is inverse kinematics of redundant arms: a manipulator may
be able to reach some end-effector position in more than one configuration. The prob-
lem is essentially to learn to predict the different possible responses to the same input.
Next we look at some popular approaches to switching regression and techniques used
to perform inference with them.
Conditional mixture models

An approach to achieve multiple responses is to use a conditional mixture model
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Figure 2.10: Graphical models depicting a conditional mixture model (left) and a mixture
of experts model (right).

(Bishop, 2006), which is the supervised learning equivalent of a mixture model for
modeling probability densities in unsupervised learning. That is, as a Gaussian mix-
ture model provides a multimodal probability distribution for some datapoint, a condi-
tional mixture model provides a multimodal probability distribution for the output of a
regression problem.

A graphical model representation of a conditional mixture model is displayed in
Fig. 2.10 (left). The output variable is y and the input variable is x. The unobserved
(and hence not shaded) variable z is discrete and indexes different regression modes.
The distribution p(z) (the prior of each mode) is a multinomial distribution. If z ranges
from 1 to K, then there are K different modes in the probability distribution.

Given that the graphical model represents the joint probability distribution as the
product of the probability distributions of each variable, the joint distribution for the
graphical model in Fig. 2.10 (left) is:

p(x,y,z) = p(x)p(y|x,z)p(z) (2.11)

What we are interested in is to obtain the (multimodal) probability distribution of
the output given some input, i.e. we are interested in p(y|x). Using the two fundamen-
tal rules of probability (the sum and product rule) we find from (2.11) that p(y|x) is
given indeed by a mixture distribution as required:

p(y|x) =
K

∑
k=1

p(z= k)p(y|x,z= k) (2.12)

Mixture of experts
When a dependency of the hidden discrete variable on the input variable x is intro-

duced, the model is called a mixture of experts model (Jacobs et al., 1991; Xu et al.,
1995). The graphical model representation of a mixture of experts model is displayed
in 2.10 (right). This represents the following joint probability distribution.

p(x,y,z) = p(x)p(y|x,z)p(z|x) (2.13)
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Again, if we use the basic rules of probability, we find that the conditional density
of the output given the input is given by:

p(y|x) =
K

∑
k=1

p(z= k|x)p(y|x,z= k) (2.14)

A mixture of experts model is useful not only for multimodal problems but also for
complex problems where it is easier to decompose the problem in local areas in input
space (by defining p(z|x) to give probability mass in local areas of x). For example, one
could use a set of simple models for p(y|x,z= k), e.g. linear Gaussian and still be able
to model a complicated nonlinear predictive distribution p(y|x). In the first mixture of
experts model (Jacobs et al., 1991), the mixing coefficients p(z = k|x) were modeled
using a neural network, which was termed the gating network. A further development
of the mixture of experts model came in the form of the hierarchical mixture of experts
model, which further divides areas of locality (Jordan and Jacobs, 1994). It is worth
noting that the mixture of experts approaches may be more useful for decomposing a
complex learning problem in input space for stationary problems rather than learning
a nonstationary or multimodal regression problem. Conditional mixture models are
usually more suitable for dealing with nonstationary problems and the focus will be on
these from now on.
Expectation Maximization for conditional mixture models

As these models are graphical models with hidden variables, the Expectation Max-
imization (EM) algorithm is typically used to train them (gradient descent on a likeli-
hood function was used for the initial model in (Jacobs et al., 1991)). It is worth going
in some detail about the EM algorithm for the conditional mixture model, as this is
related to the multiple model approach that will be the focus of Chapter 4.

The EM algorithm (Dempster et al., 1977; Bilmes, 1997) tries to maximize the
likelihood of the observed data, i.e. in the case of the conditional mixture model the
inputs X = [xi]1...N and the outputs Y = [yi]1...N , where N is the number of datapoints.
Maximizing the likelihood is equivalent to maximizing the log-likelihood as the loga-
rithm is a monotonically increasing function. Thus, for mathematical convenience, the
log-likelihood is typically maximized instead of the likelihood. The log-likelihood is
given by the expression:

L (X ,Y ) =
N

∑
i=1

log
K

∑
k=1

p(zi = k)p(yi|zi = k,xi) (2.15)

The goal is to maximize this log-likelihood with respect to p(z = k) and the pa-
rameters of p(yi|zi = k,xi) (the distribution of the inputs p(x) that should in principle
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be included in the likelihood function is not of interest in general – as it is not useful
for predicting the output for some input – and is not modeled). Because of the sum in-
side of the logarithm, this maximization is not easy to perform exactly using nonlinear
optimization techniques. Instead, of maximizing the log-likelihood directly, the EM
algorithm maximizes the expected (with respect to the hidden variables) complete data
log-likelihood (i.e. the log-likelihood if the hidden variables were also observed):

Q =
N

∑
i=1

K

∑
k=1

p(zi = k|yi,xi)[log p(zi = k)+ log p(yi|zi = k,xi)] (2.16)

The expected complete log-likelihood is a much easier quantity to maximize with
respect to the parameters. The EM algorithm is an iterative procedure that alternates
between computing the expected complete log-likelihood, i.e. computing the posterior
p(zi = k|yi,xi) (E-step) and maximizing the parameters of the expected complete log-
likelihood (M-step). In the E-step, the parameters estimated in the previous M-step are
used and kept fixed.

In the conditional mixture model scenario, the posterior p(zi = k|yi,xi) is easily
computed using Bayes law as:

p(zi = k|yi,xi) =
p(yi|,zi = k,xi)p(zi = k)

∑Kk=1 p(yi|,zi = k,xi)p(zi = k)
(2.17)

Maximizing the expected complete log-likelihood with respect to p(z = k) is also
straightforward. It can be easily shown that it can be exactly maximized by setting:

p(z= k) =
1
N

N

∑
i=1

p(zi = k|yi,xi) (2.18)

Maximizing with respect to the parameters of p(yi|,zi = k,xi) can be more tricky,
depending on the form of the distribution chosen. If it is chosen to be a Gaussian
centered at the prediction of some parametric model gk(x) with some variance Σk, i.e.

p(yi|zi = k,xi) = N (gk(xi),Σk) (2.19)

then maximizing with respect to Σk is achieved by:

Σk =
1
N

N

∑
i=1

K

∑
k=1

p(zi = k|yi,xi)(yi−gk(xi))(yi−gk(xi))T (2.20)

Maximization with respect to gk(x) can be more complicated depending on the
specific form of g chosen.
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Annealed competition of experts and related methods
There is more work on learning switching and multimodal problems (Kohlmorgen

et al., 1994; Müller et al., 1995). In (Kohlmorgen et al., 1994), a set of predictors fk(xi)
give some prediction that is compared to the actual observed output yi to give the error
term:

ek(xi) = | fk(xi)− yi| (2.21)

Then, a moving average filter is applied to the error terms to get a new error term as:

Ek(i) =
∑
η
j=−η ek(xi+ j)

2η+1
(2.22)

The ith datapoint is then used to train only the predictor fk with the smallest Ek(i).
The algorithm alternates between computing the errors and training the predictors.
This approach resembles the EM used for training a conditional mixture model. It
essentially differs in the fact that it computes errors only instead of posterior probabil-
ities of a hidden variable and that hard assignment of data to models is used instead
of maximization of the expected complete log-likelihood which amounts to taking into
account all the data for training all the models, weighted of course by the respective
posterior probabilities.

In (Müller et al., 1995), the squared prediction error for each predictor is computed
and is used to compute weightings as:

γik =
e−βek(xi)

∑ j e−βe j(xi)
(2.23)

This is equivalent to inferring the posterior of the hidden variable in a conditional
mixture model, with β being the inverse variance of the Gaussian noise and the differ-
ence that the noise variance is the same for the different predictors and all predictors
have equal prior probabilities. All the datapoints are then used to train all models and
the γtk are used to weigh the contribution of each datapoint, i.e. this approach is closer
to the EM procedure for training conditional mixture models. The parameter β con-
trols the competition between the predictors for data. When β has a small value, the
γtk will tend to have similar values and the predictors will be trained with similar data,
i.e. there is a low competition between the predictors for data. As β grows larger,
the competition increases and at the limit β= ∞, the competition is hard and only one
model is trained with each datapoint as in (Kohlmorgen et al., 1994). An annealing
of β is suggested, from a low to a high value. If this is done carefully, i.e. increasing
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the competition only when the overall prediction error stops decreasing, the data can
be separated between experts successfully. The resulting algorithm was termed the
Annealed Competition of Experts (ACE). Also, a similar as before moving average
procedure on the errors can be used and can improve the separation of data between
models when the predictions of the different predictors cross.

Furthermore, in (Liehr et al., 1999) an extension of (Müller et al., 1995) is pre-
sented, where a moving average of the errors is replaced by a Hidden Markov Model
to model the temporal smoothness of the unobserved switching process. This uses an
input dependent transition matrix A(x), which is modeled by a neural network. The
competition factor β is still annealed and the model is trained using gradient descent
on a likelihood function. This is a step towards the proper probabilistic approach that
will be used and discussed later, with the difference that gradient descent is used for
training instead of the more efficient EM and that the competition factor (noise esti-
mate) is annealed instead for learned.
Mixture density networks

Mixture density networks (Bishop, 1994) is another approach that has been pro-
posed for multimodal regression problems. Mixture density networks are supervised
neural networks – in (Bishop, 1994) multilayer perceptrons are used – whose outputs
represent the parameters of a mixture model. Say the prediction is given by a Gaussian
mixture model of the form:

p(y|x) =
K

∑
k=1

p(z= k)N (gk(x),Σk(x)) (2.24)

The parameters of this distribution are the mixing proportions p(z= k), the means
gk(x) of the Gaussians and the variances Σk(x) of the Gaussians. If there are K different
modes and l outputs and assuming independent noise between outputs, i.e. diagonal
Σi(x), then the mixture density network will have k(1 + 2l) outputs. The model is
trained using gradient descent on a likelihood cost function. A more efficient approach,
using radial basis function networks and an Expectation Maximization algorithm has
been suggested in (Vlassis and Kröse, 1999). Also, regularization in mixture density
networks is discussed in (Hjorth, 1999).
Other methods

Another approach for multimodal and nonstationary regression has been proposed
in (Ghahramani and Jordan, 1994; Ghahramani, 1993). Ghahramani proposes to learn
the joint probability density of the input and output variables using a mixture model.
That is, learn the probability density p(y,x). Then, the regression problem is to com-
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pute the conditional density p(y|x). The probability density p(y,x) is modeled as a
mixture of Gaussians and thus the conditional density p(y|x) is also a mixture of Gaus-
sians with as many mixture components as the joint density p(y,x). This approach
requires to know the appropriate number of mixture components (although there are
ways to add mixture components incrementally on an as needed basis) and in most
cases a very large number of mixture components may be required to model the input-
output relationship accurately.

A nonparametric technique has also been suggested for multimodal regression
(Einbeck and Stutz, 2006b,a). In this approach, a kernel density estimator is used
to obtain an estimate of p(y|x) and then an iterative search procedure is used to find
the modes of this density. Nevertheless, this approach relies on proper setting of the
kernel widths and this can be tricky.

Figure 2.11: Learning from a moving window of data for dealing with nonstationarity.
Only the data inside the sliding window are used to train the learner at each time.

Furthermore, a short survey of methods for dealing with nonstationarity in clas-
sification and concept learning is presented in (Kubat, 2004). Although not directly
relevant to the regression problem that is of interest for a learning dynamics task, it is
worth mentioning some of the approaches that are used. The most common approach
is to learn using a limited, moving window, set of data (Fig. 2.11). This approach
has been treated in the FLORA systems, including techniques for detecting context
change (using some heuristic that depends on the prediction accuracy) and automati-
cally adapting the window size and for storing identified contexts (Widmer and Kubat,
1993) (using another heuristic for defining concepts as stable and then storing them).
Similar approaches for dealing with nonstationarity in concept learning are presented
in (Harries et al., 1998; Harries and Horn, 1996; Kubat and Widmer, 1995). The ap-
proach of a moving window of training data, although seems fairly reasonable, is not
really applicable since it would require – even with a relatively small window – re-
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learning the model very frequently, something that is clearly prohibitive for a nonlinear
control problem. However, the approach of storing learned definitions of concepts and
using them as they recur is related to the approach of using a set of models that will be
discussed later.

2.3.3 Nonstationarity in reinforcement learning

Reinforcement learning (Sutton and Barto, 1998) (Kaelbling et al., 1996) is the sub-
field of machine learning that deals with the problem of learning to act in order to
maximize received reward. The results of actions can be stochastic and there may be
delayed rewards, complicating the problem significantly. Nonstationarity in reinforce-
ment learning has been treated in (da Silva et al., 2006a,b; Doya et al., 2002). (Doya
et al., 2002) is of particular interest as it is essentially a direct extension of the multiple
model paradigm that has been proposed in (Wolpert and Kawato, 1998) and will be
considered later. All of the mentioned work relies on the use of a set of models, each
of which is appropriate for a different context. The approach of Silva compared to
the approach of Doya, has the advantage that it can deal, after tuning of the relevant
parameters, with an unknown number of contexts, i.e. it allows for dynamic addition
of models. It learns a transition and a reward model for each context, from which the
policy for each context is derived and consequently switches as appropriate. The work
of Doya on the other hand allows the use of local models for the control of both non-
linear and nonstationary systems by allowing different local models to decompose the
control problem in space (the state-space of the system) and time (the different con-
texts). However, Doya’a work does not deal with an unknown number of contexts, i.e.
the correct number of contexts needs to be known and also the correct number of local
models needed to deal with each context needs to be known also. As mentioned, its
architecture is similar to the architecture proposed in (Wolpert and Kawato, 1998), i.e.
it uses a pair of predictor (forward models) and controller (inverse models) modules,
instead of transition (the forward model essentially) and reward models.

2.4 Transfer learning

One of the goals of this work is to generalize the knowledge obtained by experiencing
a set of contexts to other contexts as well. This goal is related to a subfield of machine
learning that comes under a few different titles: lifelong learning, learning to learn,
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multi-task learning, transfer learning (Thrun and Pratt, 1997). Transfer learning is a
topic that has attracted a lot of attention in the machine learning community and stud-
ies how learning one task could help improve learning another related task. Transfer
learning methods are relevant for our problem since the dynamics of the individual
contexts are related and thus, the use of such methods could improve the speed and
accuracy of learning in novel contexts, in particular regression methods like (Bonilla
et al., 2008; Evgeniou et al., 2005). Transfer learning has been applied to accelerate
learning of new environments from autonomous robots (Thrun and Mitchell, 1995) and
there has been some recent work on applying transfer learning techniques for learning
inverse robot dynamics (Chai et al., 2008).



Chapter 3

Motor learning and control using a
single dynamics model

In this chapter learning a single inverse dynamics model and using it for control under
stationary and nonstationary conditions is discussed. As was mentioned in the previ-
ous chapter, the problem of dynamics learning for control is essentially a problem of
nonlinear regression. A robust nonlinear regression algorithm that is suitable for mo-
tor learning tasks is presented first and experiments using this algorithm for learning
dynamics and control of two robot arms with stationary dynamics are performed. The
chapter concludes by experimentally examining the effects of nonstationarity on motor
learning.

3.1 Locally Weighted Projection Regression

Locally Weighted Projection Regression (LWPR) (Vijayakumar et al., 2005) – an al-
gorithm which is extremely robust and efficient for incremental learning of nonlinear
models in high dimensions is used as our regression tool of choice. An LWPR model
consists of a set of linear models, each of which is accompanied by a locality kernel
that defines the area of validity of the linear model. The kernel has a Gaussian form.
That is, for some input vector xxx the activation of the kth locality kernel is given by:

wk = exp(−
1
2
(xxx− ccck)TDk(xxx− ccck)) (3.1)

where ccck is the center of the kernel and Dk, the distance metric, defines the shape
and size of the kernel. The kth local model gives an output prediction yk(xxx) using
Partial Least Squared (PLS). PLS projects the input on a small number of directions in

29
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input space (the directions of maximum correlation with the output) and then performs
linear regression on the projected inputs. The use of PLS makes LWPR suitable for
high dimensional input spaces. The combined prediction of the LWPR model, ŷ, is

ŷ(xxx) =
1
W ∑

k
wk(xxx) yk(xxx) , W =∑

k
wk(xxx) . (3.2)

The schematic of the LWPR framework is displayed in Fig. 3.1.
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Figure 3.1: Structure of an LWPR model. Each local linear model gives some prediction
(green line) and has some activation (blue line) that defines the area of validity of the
local model. The total model prediction is a weighted sum of the predictions of the local
models.

The parameters of the local linear models, i.e. the projection directions and the
regression coefficients are learned online using a recursive version of locally weighted
PLS. Projections are added on an as needed basis: one additional projection direction
is always kept and is included in the regression only if the error of the additional
projection is smaller than some percentage of the error of the previous projection. The
distance metric Dk is also learned online using gradient descent on the following cost
function:

J =
1

∑Mi=1wi

M

∑
i=1

wi(yi− ŷi,−i)2 +
γ
N

N

∑
i, j=1

D2
i j (3.3)

The first term in (3.3) is the leave one out cross validation error (hence the subscript
i,−i) on a set of M datapoints and can be reformulated in terms of the PRESS residual
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error. This allows online incremental computation of the cost function. The second
term (whose relative contribution is determined by the factor γ) penalizes too narrow
kernel widths (small values in Dk) and prevents overshrinking of local models. The
distance metric is updated using a stochastic approximation of the gradient dJ

dM as:

Mn+1 =Mn−a
dJ
dM

where D=MTM (for positive definiteness) (3.4)

The complete set of equations for updating the local model regression and projec-
tion parameters as well as the distance metric can be found in (Vijayakumar et al.,
2005).

Furthermore, local models are added on an as needed basis, i.e. when no kernel
is activated above some threshold for some new datapoint, a new local model is cre-
ated centered at the new datapoint. Pseudocode for learning with LWPR is given in
Table 3.1

Table 3.1: Pseudocode for learning with LWPR. Adopted from (Vijayakumar et al., 2005)

− I n i t i a l i z e t h e LWPR wi th no l o c a l models
− For e v e r y new t r a i n i n g sample (xxx,y ) :

− For k =1: t o K (# of l o c a l models ) :
− c a l c u l a t e t h e a c t i v a t i o n wk
− u p d a t e p r o j e c t i o n s , r e g r e s s i o n c o e f f i c i e n t and d i s t a n c e m e t r i c Dk
− check i f number o f p r o j e c t i o n s needs t o be i n c r e a s e d

− I f no l o c a l model was a c t i v a t e d by more t h a n wgen :
− c r e a t e a new l o c a l model c e n t e r e d a t xxx

LWPR provides statistically sound input dependent confidence bounds on its pre-
dictions. To derive the confidence bounds, the following data-generating process is
postulated for the kth local model prediction yq,k for some new input xq:

yq,k = yq+ ε1 + ε2,k (3.5)

This corresponds to the weighted linear regression model in (Gelman et al., 1995)
with two separate noise processes ε1 ∼ N(0,σ2/wk) and ε2,k ∼ N(0,σ2

pred,k/wk). The
first noise process is independent of the local model and accounts for the differences
between the predictions of the local models and the second is the noise process of the
individual local models. Then, the predictive variance over all models can be approxi-
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mated as:

σ2
pred =

∑k wkσ2

(∑k wk)2 +
∑k wkσ2

pred,k
(∑k wk)2 (3.6)

This expression, requires estimates for σ2 and σ2
pred,k. In (Vijayakumar et al., 2005),

σ2 is approximated as ∑k wk(ŷq− ŷk,q)2/∑k wk and an incremental update is derived
for σ2

pred,k.

The role of LWPR in acquiring the probabilistic inverse model of Fig. 2.6 (b) can
be summarized in the equation:

P(τ |θt+1,θt) = N (g(θt+1,θt), σ(θt+1,θt)), (3.7)

where g(θt+1,θt) is now a learned LWPR regression, mapping state transitions to
torques. Here, we have two options for choosing the variance: (1) we can assume
a fixed noise level independent of the context and the input; (2) we can use the confi-
dence bounds provided by each LWPR model which also depends on the current input
(θt+1,θt). We will test both cases in our experiments.

There are other learning algorithms that have been applied for learning dynamics
(Nguyen-Tuong et al., 2008), e.g. Gaussian Process Regression (GPR) (Rasmussen
and Williams, 2006) or Support Vector Regression (SVR) (Müller et al., 2001). In
(Nguyen-Tuong et al., 2008), GPR, SVR and LWPR models are trained offline and
tested on data gathered from a simulation of the SARCOS arm and the real SAR-
COS arm. Accuracy of GPR and SVR on the test data is higher than the accuracy of
LWPR, both for the simulation and the real arm data. GPR and SVR have the addi-
tional advantage that they do not depend on a large number of parameters – like LWPR
– and are therefore easier to tune. The drawback is that training of GPR and SVR has
taken roughly twice the time than LPWR. In addition, lookup during online control
was slower for GPR and SVR than LWPR and could not be performed in the same
frequency as LWPR. In addition, GPR and SVR can not be used in an online learning
scenario. In conclusion, currently no regression algorithm can match the computa-
tional efficiency and online learning ability of LWPR for learning dynamics in high
dimensional scenarios. LWPR is particularly suitable when the methodology needs
to be scaled up to deal with large amounts of training data as well as deal with high
dimensional movement systems.
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3.2 Experiments

We verify the ability to learn the inverse model online with LWPR and show that the
learnt model can successfully be used for control. We demonstrate our results on two
physically realistic simulations of robotic arms, a 3 DOF artificial arm and a 7 DOF
DLR LWR III simulation.

3.2.1 Experimental setup

A 3 DOF robot arm (see Fig. 3.2) was used. This resembles a 2 DOF planar arm, with
the third DOF (the first joint) allowing up and down movement. Simulations were
performed using the Open Dynamics Engine library (ODE) and OpenGL.

Figure 3.2: Simulated 3 DOF arm.

Simulations with the Open Dynamics Engine
ODE is an open source library for simulating articulated rigid body dynamics.

Rigid bodies are the primary building blocks of an ODE based simulation. By rigid
we mean that elasticity of objects is not modeled (although no real object is infinitely
stiff). In a typical ODE simulation, a set of rigid bodies is defined (boxes, cylinders,
spheres) along with a set of joints between them. These joints, constrain the relative
movement between the bodies that are connected to the joint. For example, in Fig. 3.3,
we can see two boxes connected with a hinge joint. A hinge joint constrains the move-
ment between two bodies so that they can only rotate around a single axis relative to
each other. To define such a structure in ODE, we need to define the initial position
and orientation of the two bodies as well as the rotation of axis of the joint in some
global coordinate system. Other joints like the two-axis, the universal (three-axis) and
the slider joints are provided. An articulated object, like a robot arm, can be created
in ODE by setting up a sequence of bodies, connected by joints. Each body is char-
acterized by a shape that is used for collision detection and some inertial parameters
(mass, position of center of mass and inertia tensor) that are used for the movement
simulation.
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Figure 3.3: Hinge ODE joint. Adopted from the ODE user guide (Smith, 2006).

At each iteration cycle, a set of forces or torques are applied at the bodies or joints
and ODE returns the next state of the system (i.e. bodies positions, rotations, linear and
angular velocities, joint angles and velocities). Furthermore, ODE performs collision
detection and applies the appropriate forces to the bodies when a collision is detected.
The pseudocode in Table 3.2 describes a typical ODE simulation.

In addition, we use the shapes, positions and orientations of the bodies provided by
ODE to visualize the movement of the system using OpenGL.

Table 3.2: Pseudocode for a typical ODE simulation loop. Partly adopted from the ODE
user guide (Smith, 2006).

1 . C r e a t e a wor ld and s e t wor ld p a r a m e t e r s .
2 . C r e a t e b o d i e s i n t h e wor ld .
3 . S e t t h e s t a t e ( p o s i t i o n , r o t a t i o n e t c . ) o f a l l b o d i e s .
4 . C r e a t e j o i n t s i n t h e wor ld .
5 . A t t a c h t h e j o i n t s t o t h e b o d i e s .
6 . S e t t h e p a r a m e t e r s o f a l l j o i n t s .
7 . Loop :

a . Apply f o r c e s t o t h e b o d i e s a s n e c e s s a r y .
b . A d j u s t j o i n t p a r a m e t e r s a s n e c e s s a r y .
c . C a l l c o l l i s i o n d e t e c t i o n .
d . Take a s i m u l a t i o n s e t u p .

8 . D e s t r o y t h e dynamics wor ld .

The structure and physical properties of the 3 DOF arm are given in Table 3.3 and
sample C++ code for setting up the simulation of the arm is given in Appendix A.

In the second setup, the DLR light-weight arm (Fig. 3.4 (left)) was simulated us-
ing the Matlab robotics toolbox (Corke, 1996). The DLR light-weight arm is a high
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Table 3.3: Structure of the artificial 3 DOF simulated arm

Links
Link Length Width Depth Mass
1,2,3 1 0.2 0.2 1 Kg

Joints
Body 1 Body 2 Axis of rotation

Pole 1 [1 0 0]
1 2 [0 0 1]
2 3 [0 0 1]

performance manipulator developed at the German Aerospace Center. It has 7 DOFs
and it’s structure is represented in Fig. 3.4 (right). The exact physical parameters of
the DLR arm are protected and cannot be included here.
Simulation using the Matlab Robotics Toolbox

The Matlab Robotics Toolbox (MRT) is a set of tools for kinematics and dynamics
problems of generic manipulators. The dynamics tools of the MRT are also based on
the assumption of rigid bodies. To run a simulation in the MRT, one again needs to
define a set of links and joints between the links, then loop applying a set of forces or
torques at the joints, computing the next state and so on, in a similar way as in an ODE
simulation.
3 DOF arm task

The task of the 3 DOF arm was to follow a simple trajectory planned in joint angle
space, consisting of a superposition of sinusoids with different phase shifts for each
joint:

θ∗i = ai cos(αi
2π
T
t)+bi cos(βi

2π
T
t) , (3.8)

where T = 4000 is the total length of the target trajectory (which is 40 seconds,
since control happens at 100 Hz), ai,bi ∈ [−1,1] are different amplitudes and αi,βi ∈
{1, ..,15} parameterize different frequencies. This task was selected so that a suffi-
ciently rich movement will be executed. As it will explained in Chapter 5, a sinusoidal
task can be useful for exciting specific components of the dynamics that are of interest.
This task will be used for all experiments with the 3 DOF arm in this thesis.

20 iterations of the trajectory were repeated: during the first four iterations, pure
feedback PD control (2.1) was used to control the arm, while at the next 16 iterations,
a composite controller (2.9) using the inverse model being learned was used. Every



36 Chapter 3. Motor learning and control using a single dynamics model

second datapoint was used for training whereas the rest was used for testing. The
gains were lowered as training proceeded. The procedure was executed ten times and
repeated for ten different stationary contexts for accumulating statistics. Different con-
texts are simulated by attaching an object with different mass at the last link of the arm.
The mass of the load ranged from 0.1 Kg to 1.9 Kg, in increments of 0.2 Kg.
DLR arm task

The task for the experiments with DLR arm simulation was to follow a figure of
eight trajectory in task space. The inverse kinematics for the task space trajectory were
computed to obtain a smooth trajectory in joint angle space. The trajectories of in-
dividual joints have enough variation so that again a sufficiently rich movement will
be executed. 30 iterations of the trajectory were repeated. This time, the composite
controller was used from the beginning of the simulation and again every second dat-
apoint was used for training whereas the rest was used for testing. The procedure was
repeated six times for six different contexts. The mass of the load ranged from 0.1 Kg
to 0.6 Kg, in increments of 0.1 Kg.

Figure 3.4: The DLR light-weight arm (left). Structure of the DLR arm (right).

Performance measures Three performance measures are used:

1. The normalized mean squared error (nMSE) between the torques predicted by
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the LWPR model and the true torques experienced on the test data (i.e. the data
that was held out from the training). Denoting the prediction of the model as τ̂t
and the actual torque experienced as τt , the nMSE is given by:

nMSE =
1

var(τ)T

T

∑
t=1

(τ̂t− τt)
2 (3.9)

2. The relative contribution of the feedback command to the composite command.
Let the feedforward component of the applied command be τ f ft and the feedback
component of the command be τ f bt . The relative contribution of the feedback
command to the composite command is given by the ratio:

|τ f bt |

|τ f bt |+ |τ f ft |
(3.10)

We compute the mean of this quantity over a whole iteration. The more accu-
rate the learned model is, the smallest will the error-correcting feedback be and
therefore, the smaller the ratio will be. This gives an indirect measurement of
how well the inverse model used approximates the actual dynamics.

3. The absolute tracking error. That is, if the desired joint angle at time t is θ∗t
and the actual joint angle is θt , the absolute tracking error is |θ∗t −θt |. We also
compute the mean of this quantity over a whole iteration.

3.2.2 Results

The results for the 3 DOF robot are given in Fig. 3.5. Results are averaged over the
ten trials and error bars indicate the standard deviation between the trials. The left
plot shows how the nMSE on the test data drops as training proceeds and settles at
a very low value. The contribution of the error-correcting feedback command to the
feedforward command (see Fig. 3.5 (middle)) is low, vouching for the accuracy of the
learnt model while being used for control. Furthermore, the tracking error (Fig. 3.5
(right)) is very low and improves significantly when we switch to composite control.
For all performance measures, the variance between trials is low, indicating that they
have a similar behaviour in all trials.

The results for the DLR arm are presented in Fig. 3.6. Again, on Fig. 3.6 (left) it
can be seen that the normalized mean squared error between the torques predicted by
the LWPR model and the true torques experienced on the test data is very low over



38 Chapter 3. Motor learning and control using a single dynamics model

0 10 20

10−2

10−1

100

Iteration

nM
SE

0 10 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

Ra
tio

 o
f f

ee
db

ac
k 

to
 c

om
po

sit
e 

co
m

m
an

d

0 10 20
0

0.2

0.4

0.6

0.8

1

Iteration
Tr

ac
kin

g 
er

ro
r

0

50

100

150

200

250

G
ai

ns

 Joints 1−3
Averaged 

 Joints 1−3
Averaged 

 Joints 1−3
Averaged 
Deriv.Gains 
Prop.Gains 

Figure 3.5: Results on learning stationary dynamics of the 3 DOF arm. Results are
averaged over ten trials (ten different loads) and the bars indicate the standard deviation
between the trials. Left: test error. Middle: contribution of error-correcting feedback
command. Right: tracking error.

all trials. Furthermore, as displayed in Fig. 3.5 (middle), the contribution of the error-
correcting feedback command to the feedforward command is low while at the same
time the tracking error (Fig. 3.5 (right)) is very low. Again, the variance between trials
is low for all performance measures. These results indicate that the dynamics model
of the real DLR arm has been well approximated by LWPR and that this model can be
used for control with excellent performance.

In the described experiments, the exact state of the system was known and the
commanded torque was exactly applied. Nevertheless, in most realistic scenarios, ap-
plications on real hardware, there will be noise on the sensed states of the system and
the commanded torque will not be exactly applied, possibly due to unmodeled actuator
dynamics or noise. Noise is an important issue in control and learning. In general
it can be expected that with a large amount of data and zero mean and low variance
noise, it will be easy to learn the actual dynamics and use it effectively for control. It
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Figure 3.6: Results on learning stationary dynamics of the DLR arm. Results are av-
eraged over six trials (six different loads) and the bars indicate the standard deviation
between the trials. Left: test error. Middle: contribution of error-correcting feedback
command. Right: Tracking error.

can also be expected that both learning and control performance would degrade as the
noise level increases.

Furthermore, it should be noted that the actual benefits of learning dynamics for
control cannot be fully appreciated on simulation, as the simulation simply imple-
ments rigid body dynamics. The dynamics of a real system will be significantly more
complex than the simulated dynamics as there are important nonlinear effects that are
not simulated such as complicated actuator dynamics or elasticity and the potential
benefits of learning will indeed be more apparent in such real world scenarios. Indeed,
it has been shown previously that learning of dynamics using LWPR on real world high
DOF robotic hardware works very efficiently (Vijayakumar et al., 2005).
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3.3 Learning under nonstationarity

In the previous section, it was demonstrated that an inverse dynamics model of a
robotic system operating under stationary conditions can be learned with a robust non-
linear regression algorithm and can be used for control. Nevertheless, the focus of this
work is on the problems caused by nonstationarity. One approach for dealing with
nonstationarity is to use online learning and adapt the model to the novel dynamics.
In general, any online learning algorithm can deal with nonstationarity and there are
ways to speed up adaptation of online learning methods to nonstationary data by tun-
ing learning rates (Murata et al., 1996). LWPR uses a forgetting factor λ which can be
used to tune how much older data contribute to learning of both the local PLS models
and the locality kernels. The forgetting factor ranges from zero to one and – counter-
intuitively – the smaller the forgetting factor is, the more older data is forgotten. The
forgetting factor is used in parameter updates of the form:

θ̂new = λθ̂old + θ̂update (3.11)

Therefore, the smaller the λ is, the smaller the contribution of the old value of the
parameter is and the smaller the effect of older data is. For the exact LWPR equations
please see (Vijayakumar et al., 2005).

In this section the effect of nonstationarity is demonstrated on the 3 DOF arm
simulation. 20 iterations of the same task are first executed, with the load of the arm
being 0.1 kg. Then, for another 20 iterations, the weight of the load is doubled and
then finally, the weight of the load becomes 0.1 kg. again. The forgetting factor is set
to 0.999. The result is displayed in Fig. 3.7.

The feedback command is very small initially but when the context changes and
the learned model becomes invalid, the feedback part of the controller has to provide
significant corrective action. With time, the learned inverse model adapts to the new
dynamics and the contribution of the feedback command drops again. However, when
the load switches back to the original, the learned model becomes invalid again for a
long period of time until the model relearns the initially learned dynamics.

The same experiment was repeated with the forgetting factor set to 0.9999. The
result can be seen in Fig. 3.8.

Comparing Fig. 3.7 and Fig. 3.8 it can be seen that setting the forgetting factor
to a lower value helps to adapt faster to nonstationary dynamics. It is reasonable to
assume that the forgetting factor can be further reduced in order to further accelerate
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Figure 3.7: (a) Feedforward and feedback command and (b) tracking error while manip-
ulating a nonstationary load using a single dynamics model (the forgetting factor is set
to 0.999). The context switches at datapoint 80000 and then switches back to the initial
context at datapoint 160000. There is a lag until the feedback command drops to zero
after a switch, meaning that the learned model takes some time to adapt.
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Figure 3.8: Feedforward and feedback command while manipulating a nonstationary
load using a single dynamics model (the forgetting factor is set to 0.9999). The context
switches at datapoint 80000 and then switches back to the initial context at datapoint
160000. The feedback command decreases very slowly after a switch, meaning that
the learned model adapts too slowly.

the adaptation. The same experiment was repeated with the forgetting factor set to 0.99
and the result can be seen in Fig. 3.9. The decrease of the learning rate made learning
of the inverse model, as indicated by the feedforward command, unstable. After the
middle of the simulation learning fails completely and the feedforward command (i.e.
the predictions of the inverse model) becomes too jiggly. This indicates that online
adaptation of the model cannot be performed arbitrarily fast using lower forgetting
factors.

3.4 Conclusions

In this chapter, it was demonstrated how an inverse dynamics model can be learned
from sensed movement data and used for control. It was also demonstrated that when
there is a varying context and the learned model needs to be updated to reflect the
changing dynamics, there is a drop in performance during the period of adaptation,
as reflected in the contribution of the error-correcting feedback commands and the in-
crease in tracking error. A possible solution would be to detect the nonstationarity and
reinitialize the model, once the experienced dynamics becomes significantly different
from the learned dynamics e.g. by comparing the model predictions with the observed
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Figure 3.9: Feedforward and feedback command while manipulating a nonstationary
load using a single dynamics model (the forgetting factor is set to 0.99). The context
switches at datapoint 80000 and then switches back to the initial context at datapoint
160000. Learning of the inverse model is not stable due to the low forgetting factor.

system behaviour or examining the contribution of the feedback command. Neverthe-
less, this is still not very efficient, as it may take a potentially long period to relearn the
previously learned dynamics. In the next chapters, we will be looking at ways to speed
up adaptation of the dynamics model by reusing the knowledge obtained by learning
the dynamics of previously contexts. We start in the next chapter by examining the
case that the dynamics may switch between a set of previously seen contexts.





Chapter 4

Learning multiple models for discrete
hidden context

As already presented, nonstationarity of dynamics due to interaction with varying envi-
ronments (or contexts) poses substantial difficulties to the problem of motor learning:
the dynamics model needs to be adapted everytime the context switches. Adaptation
to varying dynamics may be a lengthy process, especially in the case that local models
are used for modeling the dynamics. The performance of the controller will be reduced
during the period of readaptation. If different contexts recur, a far more effective strat-
egy is to learn a set of models, each of which is appropriate for a different mode of the
nonstationary dynamics and switch between them appropriately.

It should be noted that the idea of multiple models has been considered in human
motion studies and there is experimental evidence (Flanagan et al., 1999) indicating
that the Central Nervous System (CNS) uses a set of models and switches between
them accordingly. There are also studies using functional magnetic resonance imaging
(fMRI) that indicate that indeed, models of different tools are spatially separated in
areas of the brain (Imamizu et al., 2003). There is, however, another study that provides
experimental evidence that the CNS does not use multiple models but instead uses a
single model under different perturbations (Karniel and Mussa-Ivaldi, 2000).

The use of multiple models for tackling switching or multimodal problems in ma-
chine learning has already been presented in Chapter 2. This chapter builds on that
material and examines the use of switching multiple models for control. Previous
approaches on the use of multiple models for motor control are presented first. Sub-
sequently, a probabilistic formulation of the multiple model scenario is proposed and
based on that, issues like context estimation and model learning are discussed. Finally,

45
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the proposed formulation is tested experimentally.

4.1 Multiple model approaches for control

4.1.1 Early approaches

One of the first approaches for using a set of models for control in robotics comes from
(Gomi and Kawato, 1993). A composite controller is used, i.e. the applied command
of the system is the sum of a feedforward u f f and a feedback u f b command. The
feedforward command is given by a mixture of experts model as:

u f f =
K

∑
i=1

giui (4.1)

where ui is the output of the ith inverse model and gi is the output of the gating net-
work that determines the responsibility of each model to the current dynamics. The
gating network can either take as input time delayed state transitions and commands
or other sensory information that may allow to determine which model is appropriate
for each case, e.g. visual information. In practice, visual information may be useful
but sometimes deceiving, as environments or objects with different physical properties
may provide similar or the same visual clues. The difference of this gating network
compared to the original mixture of experts formulation, is the addition of inputs that
provide more information about the context and not only the same input that is fed
to the individual expert networks (inverse models). The model (gating network and
inverse models) is trained by gradient descent on a likelihood function.

A very similar approach has been proposed in (Cacciatore and Nowlan, 1994). The
system is termed “mixtures of controllers” and again is a mixtures of experts variation.
The difference with the model of (Gomi and Kawato, 1993) is that the gating network
does not take as input time delayed state transitions and commands or other sensory
information. Instead, the gating network is a function of the inverse models’ input,
(state transitions) and its own previous output. That is, the gating network is:

gt = f (θt ,θt+1,gt−1) (4.2)

The model is again trained by gradient descent on a likelihood function.
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4.1.2 Multiple models switching and tuning

More work on the use of multiple models for nonstationary control tasks has been done
by Narendra: (Ciliz and Narendra, 1996; Narendra and Balakrishnan, 1997; Narendra
and Xiang, 2000). Narendra terms his system Multiple Model Switching and Tuning
(MMST). MMST consists of a set of pairs of models and controllers (inverse models
or non-model based controllers) corresponding to different modes of operation. The
structure of the models is assumed to be known and the parameters – that are assumed
to appear linearly in the dynamics – are appropriately placed in the space of possible
dynamics. The nonstationary system is controlled by computing a cost function for
each context and switching to using the one with the smallest cost. There are various
possible choices for the cost. Let the prediction of the ith forward model be yi, then
using the error ei = y− y∗, some cost functions that have been used are:

Ji(t) = e2
i (t) (4.3)

Ji(t) =
∫ t

0
e2
i (τ)dτ (4.4)

Ji(t) = αe2
i (t)+β

∫ t

0
e2
i (τ)dτ (4.5)

Ji(t) = αe2
i (t)+β

∫ t

0
e−λ(t−τ)e2

i (τ)dτ (4.6)

(4.7)

The cost function determines the importance of newer versus older measurements
and different cost functions are more appropriate for different cases. For example,
the cost function (4.3) takes into account only the current accuracy of the models to
predict the current mode of the system and is more appropriate for systems that may
switch faster. However, it is not suitable when there is noise in the measurements
or inaccuracies in the models. On the other hand, the cost function (4.4) takes into
account the long term errors and is more appropriate for systems that may involve
noisy measurements than (4.3). Nevertheless, this cost function would detect a switch
with some lag and would not be suitable for systems that switch fast. It would be
suitable for systems with noisy measurements that may switch slower. A combination
of the cost functions (4.5) and (4.6) are the cost functions (4.5) and (4.6), which weigh
the short and long term contributions by corresponding factors α and β. Thus, they
can be tuned to better deal with situations with different levels of measurement noise
and frequency of switching. The cost function (4.6) also involves a forgetting factor λ
which determines the length of the memory of the long term error contribution to the
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cost and therefore provides another way to tune the system according to how fast the
dynamics switch.

The controlled system’s dynamics may be linear or nonlinear, the adaptive param-
eters though, always appear in the models linearly and are adapted by a linear adaptive
control law. Models in MMST are grouped in two different classes: adaptive and fixed.
Depending on the class of the models, there are different kinds of MMST systems:

• All N models fixed.

• All N models adaptive.

• N−1 models fixed and one model adaptive.

• N−2 models fixed and two models adaptive.

MMST has been shown to result in a stable controller and has been shown to greatly
improve control performance under nonstationary dynamics. However, there is no
learning of the initial models (i.e. the models’ parameters, since the form of the models
is assumed to be known) and prior knowledge of the possible dynamics is required: to
achieve good performance the models must be placed in areas of the context space that
dynamics appears frequently or otherwise properly optimized, especially in the case
that all models are fixed. This can still be an important issue in the case that all or at
least one model are adaptive but not as much as when all models are kept fixed. The
motivation for MMST is to improve control performance whereas the motivation for
this thesis is not only to improve control performance, but the focus is also on learning
(knowledge of the structure of the dynamics is not assumed) and as mentioned there is
essentially no learning in MMST, or little if linear parameter adaptation can be referred
to as learning. An example of the application of MMST to a varying load manipulation
task is presented in (Ciliz and Narendra, 1994). Furthermore some experimental results
on tuning a MMST system can be found on (Karimi et al., 2001).

4.1.3 Multiple paired forward and inverse models

Another approach is the Multiple Paired Forward and Inverse Models (MPFIM)
(Wolpert and Kawato, 1998). As the name suggests, MPFIM uses pairs of forward
and inverse models. Inverse models are used for control, whereas forward models are
used for context estimation. Let θ̂tk be the prediction of the kth forward model for the
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state of the system at time t and θt be the true state of the system at time t. Then, a
responsibility signal for each context is calculated using a softmax function as:

λtk =
e−|θt−θtk|

2
/2σ2

∑Kj=1 e
−|θt−θtj|

2
/2σ2

(4.8)

Here, σ is a scaling constant that plays a similar role as the competition coefficient
in Annealed Competition of Experts and the noise variance in conditional mixture
models. The responsibilities sum to one and the closest the responsibility is to one the
more likely it is that the corresponding context is the current.

Learning in MPFIM is controlled by the responsibility signals. All models, both
forward and inverse are trained with all data using gradient updates weighted by the
respective responsibilities. That is, the change of parameters wk of the kth forward
model is given by:

Δwtk = ε
dx̂tk
dwtk

λtk(θ
t− θ̂tk) (4.9)

A similar update is used for learning the inverse models that are used for control.
Models that predict better will be updated, whereas models with poor predictive per-
formance will learn less.

The responsibility signals are also used for control. The applied feedforward com-
mand ut is the weighted average of the predictions given by the individual inverse
models ûtk as:

ut =
N

∑
k=1

λtkû
t
k (4.10)

A mechanism for detecting contexts prior to actual movement execution is also
proposed. Assume the context is reflected to some other sensory input, e.g. vision.
Then another regressor λ̂tk is trained with the visual data as input and the responsibility
predictions as output. Gradually, λ̂tk should learn to predict the responsibilities λtk prior
to movement execution and could be used to initiate movement execution.

Since the estimated responsibilities λ̂tk are available prior to movement execution
and sum to 1, they could be interpreted as the prior probabilities of each context. Also,
the responsibilities λtk could be interpreted as the likelihood of each context, since they
are available after movement execution. These could be then combined using Bayes
rule to obtain posterior responsibilities for the contexts λ̄tk as:
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λ̄tk =
λ̂tkλ

t
k

∑Nj=1 λ̂
t
jλ
t
j

(4.11)

These posterior responsibilities can then be used for learning and control instead
of λtk.

MPFIM resembles the system in (Gomi and Kawato, 1993), the difference being
the absence of the gating network. MPFIM allows mixing (instead of switching as
in MMST) between models and is thus supposed to be able to handle a whole range
of contexts, instead of just a set of contexts. Nevertheless, no justification why the
predictions of individual models can in general be weighted in a linear way in order to
deal with novel contexts is provided. The first experimental results for MPFIM were
presented in (Haruno et al., 1998), where models of a system with nonstationary but
linear dynamics are learned and used for control. The ability to generalize to new
dynamics is also displayed; however, this is fairly trivial since the dynamics is linear.

4.1.4 Modular selection and identification for control

Modular Selection and Identification for Control (MOSAIC) (Haruno et al., 2001) is an
extension of MPFIM. It tackles one of the major difficulties in MPFIM, which is set-
ting of the competition parameter σ. MOSAIC also introduces a temporal dependency
on the context evolution and forms a Hidden Markov Model in order to improve con-
text estimation and learning of the models. This is in accordance to findings (Vetter
and Wolpert, 2000) in humans that demonstrate that the CNS bases its context pre-
dictions both on the accuracy of the predictions of the internal models and on prior
knowledge about the time evolution of the context. Also, a likelihood cost function
is introduced and the system is learned with the Expectation Maximization algorithm
that estimates the dynamics models, the transition probabilities and the noise estimate
σ. This model presents an important improvement over MPFIM since it incorporates
context dynamics and uses a far more efficient learning method. MOSAIC is very
similar to the approach taken in this thesis. Nevertheless, MOSAIC has again only
been tested with a system with linear dynamics. It should also be noted that there are
fMRI studies (Imamizu et al., 2004), indicating that the human CNS utilizes a MPFIM
/ MOSAIC-like model, rather than a mixture of experts like model. That is, different
context models are separated but cooperate to guide the selection of model to be used
by the CNS, rather than utilizing a separate single gating network that would provide
the context estimates.
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4.2 Formulating multiple models probabilistically

In what follows, a probabilistic formulation, based on the conditional mixture model
will be presented. The probabilistic formulation is chosen so that uncertainty (inherent
in modeling) is taken into account. The probabilistic approach also has the benefit that
the EM algorithm, which is usually far more efficient than gradient methods, can be
used for learning.

ct

τt

θt θt+1

ct ct+1

τt τt+1

θt θt+1

(a) (b)

Figure 4.1: (a) A graphical model representing a set of multiple models. The discrete
hidden variable ct represents the context and indexes the set of models. (b) Introducing
a temporal relationship p(ct+1|ct) on the hidden variable.

The graphical model in Fig. 4.1(a) represents a set of inverse models corresponding
to a specific number of contexts and is an instance of the conditional mixture model
with the input being the state transition. The hidden contextual variable ct is discrete
and indexes the different models. A similar graphical model can be formulated for
the forward model. When learning a joint space inverse model for non-redundantly
actuated arms, the inverse dynamics has a unique solution, i.e. is not multivalued and
can thus be used for detecting the context. In the case that there is redundant actuation
or the inverse model is learned in operational space, a forward model also needs to be
learned and context estimation will have to be based on that. In this study, this scenario
will not be considered.

The inverse model in this formulation can be written as:

P(τ |θt+1,θt ,ct =k) = N (gk(θt+1,θt), σk(θt+1,θt)) , (4.12)
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where gk is the command predicted by the LWPR model corresponding to the kth con-
text and σk is some estimate of the variance, which can be either set to a maximum
likelihood estimate or based upon the input dependent confidence bounds provided by
LWPR. Also, if there is no knowledge about the prior probability of contexts, we can
assume a non-informative prior.

4.2.1 Context estimation

Under this probabilistic formulation, context estimation is just using Bayes rule to
infer the posterior of ct given a state transition and the command that resulted in this
transition:

P(ct =k |θt ,θt+1,τt) ∝ P(τt |ct =k,θt ,θt+1)P(ct =k). (4.13)

4.2.2 Introducing temporal dependency of contextual variables

Context estimates are very sensitive to the accuracy of the inverse models and the possi-
bly noisy states and commands. They can be improved by acknowledging that contexts
do not change too frequently. Similarly to the MOSAIC model, a temporal dependency
between contexts p(ct+1 |ct) with an appropriate transition probability between con-
texts can be introduced to achieve much more robust context estimation. The graphical
model can be reformulated as the Dynamic Bayesian Network shown in Fig. 4.1(b) to
achieve this. A low transition probability penalizes too frequent transitions and using
filtering, smoothing or Viterbi alignment produces more stable context estimates. Ap-
plication of standard Hidden Markov Model (HMM) techniques is straightforward by
using (4.12) as the observation likelihood in the HMM, given the hidden state ct = k.
The first estimate of interest is the filtered estimate p(ct |θ1:t+1,τ1:t). It can be com-
puted from α(ct) = p(ct ,θ1:t+1,τ1:t) as

p(ct |θ1:t+1,τ1:t) =
p(ct ,θ1:t+1,τ1:t)

∑ct p(ct ,θ1:t+1,τ1:t)
. (4.14)

The filtered estimate can in turn be computed recursively in a forward recursion, using
the next observation θt+2 (state) and τt+1 (command) to obtain the estimate at the next
time step α(ct+1) = p(ct+2,θ1:t+1,τ1:t+1) as:

α(ct+1) =∑
ct
α(ct)p(ct+1|ct)p(τt+1|θt+1,θt+2,ct+1) (4.15)

Given a full control sequence θ1:T and τ1:T , the smoothed estimated p(ct |θ1:T ,τ1:T )

can also be computed. These estimates are more accurate than the filtered estimates
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as they take into account information from the future as well. A backward pass where
the distribution β(ct) = p(θt+1:T ,τt+1:T |ct) is recursively computed from β(ct+1) =

p(θt+2:T ,τt+2:T |ct+1) is first performed as:

β(ct) = ∑
ct+1

β(ct+1)p(ct+1|ct)p(τt |θt ,θt+1,ct) (4.16)

The quantity β(cT ) = p(θT+1:T ,τT+1:T |cT ) that is needed to initialize the recursion is
meaningless (since there is no observation at time T + 1). It can be simply set to 1,
which will provide the correct results.

Finally, the forward and backward estimates are combined to provide the smoothed
estimates as:

p(ct |θ1:T ,τ1:T ) =
α(ct)β(ct)

∑ct α(ct)β(ct)
(4.17)

For online control purposes, only filtered estimates can be used, since only data un-
til the current time step will be available. As it will be discussed in the next section,
smoothed estimates will be useful for offline learning of models, since the whole se-
quence of data will be available. It also needs to be mentioned, that for numerical
stability reasons, the recursive estimates are computed somewhat differently than the
equations given here. Details can be found in Appendix B.

4.2.3 Multiple model learning

In the MPFIM, separation of data for learning the inverse models happens either online
or offline. In the online case, the predictions of the models are compared with the
observed behaviour of the system to give context estimates and the models are trained
using weighted gradient descent, where the context estimates are used as weights. This
approach worked well when the learned models were linear but has not been shown
to work for nonlinear models. In the offline case, which we are going to discuss,
an Expectation Maximization (EM) algorithm is used. This offline procedure, will
give relatively accurate (initial) models to bootstrap the context estimation procedure,
after which further online data separation can be performed. However, the offline
EM proposed by MPFIM and MOSAIC has been shown to work also only for linear
models. We will show how it is possible to use the EM algorithm for the described
conditional mixture model to do data separation and learn a set of nonlinear models.

The EM algorithm for the conditional mixture model has actually already been
developed in Chapter 2. One thing that needs to be clarified is that in the case of
the temporal model, the smoothed estimates p(ct |θ1:T ,τ1:T ) are to be used in place
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of p(zi = k|yi,xi) in (2.20). Furthermore, since it was decided to use LWPR as the
function approximator for the inverse model, a way must be found so that different
data that are used to train LWPR contribute differently to training according to their
posterior probability. It turns out that simply multiplying the kernel activations by the
posteriors yields the required weighing.

Furthermore, learning the transition probabilities from a sequence of observations
in the temporal model is straightforward using EM. In particular, the probabilities
p(ct ,ct+1 |θ1:T ,τ1:T ) for t = 1...T −1 need to be calculated (E-step) as:

p(ct ,ct+1 |θ1:T ,τ1:T ) =
a(ct)p(τt+1|θt+1,θt+2,ct+1)β(ct+1)p(ct+1|ct)

∑ct α(ct)β(ct+1)
(4.18)

Again, for numerical stability reasons, we compute p(ct ,ct+1 |θ1:T ,τ1:T ) using the
equations in Appendix B. The relative frequencies p(ct+1 |ct) for any t can be eas-
ily estimated (M-step) as:

p(ct+1 = i|ct = j) =
∑T−1
t=0 p(ct = i,ct+1 = j |θ1:T ,τ1:T )

∑Kk=1∑
T−1
t=0 p(ct = i,ct+1 = k |θ1:T ,τ1:T )

(4.19)

As usual, the procedure is iterated a few times: i.e. the posteriors p(ct |θ1:T ,τ1:T ) and
p(ct ,ct+1 |Θ1:T ,τ1:T ) are computed using some values for the transition probabilities
(one could initially set all transitions to be equally probable), then p(ct+1 |ct), the
models and the noise are estimated, then p(ct |θ1:T ,τ1:T ) and p(ct ,ct+1 |Θ1:T ,τ1:T ) are
computed again using the estimated transition probabilities, models and noise and so
on until either a maximum number of iterations is reached or some other criterion is
met, e.g. the likelihood of the observed data stops increasing.

Our approach differs from MOSAIC (which also used an EM procedure and a
HMM) in that it is based on the inverse models only (rather than combined forward
and inverse models), accounts for the possibility of nonlinear models and uses a robust
local learning algorithm. The use of a local regression method capable of learning
nonlinear models poses some important issues. These issues and their solutions will
be presented in the experiments section.

4.3 Experiments

4.3.1 Context estimation

The context estimation methods suggested earlier were tested on the simulated 3 DOF
arm and the 7 DOF DLR arm. Different contexts are assumed to be manipulated



4.3. Experiments 55

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Ac

cu
ra

cy
 (%

) o
f c

on
te

xt
 e

st
im

at
es

 

 
No HMM constant variance
No HMM with conf. bounds
HMM constant variance
HMM with conf. bounds

Figure 4.2: Online context estimation without using the context estimates for control for
the 3 DOF arm. Left: context estimation accuracy using different estimation methods.
Right: example of random context switches and its estimate using HMM filtering over
time. A detail of a switch happening at datapoint 2460 is displayed in the inset, where
we see that the estimate switch lags a few time steps behind the actual context switch.

objects with different mass. These are simulated by fixing an object with variable
mass on the last link of the manipulator.

For the simple 3 DOF arm, random switches between six contexts were performed
in the simulation, where at every time step we switch to a random context with proba-
bility 0.001 and stay in the current context otherwise. Since control happens at 100 Hz,
this means that the context changes every ten seconds on average. This is neither a too
fast or too slow switching frequency. We do not want to have too frequent switches,
so that the system has time to recover from the inevitable error after a switch. We also
want not too sparse frequent switches, so that we observe better how the system detects
switches and handles them.

There are some options for the probabilistic model used in the experiments:

• Structure of probabilistic model:

1. Temporal relationship of the hidden context used (HMM filtering, for the
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moment we assume that we know the correct transition. probabilities)

2. Temporal relationship of the hidden context not used.

• Noise model:

1. Using a maximum likelihood estimate for the noise variance.

2. Use the confidence bounds provided by LWPR to estimate the noise vari-
ance.

These give four different combinations of options. All four will be tested and for each
of them there will be five different trials in order to collect statistics. In each of the
trials, we randomly switch between six of the models that were learned in Section 3.2.
Each trial’s length is ten iterations of the trajectory. We start by examining the accuracy
of our probabilistic context estimation methods while not using the context estimates
for control (a PD controller was used). The percentage of accurate online context es-
timates for the four cases, averaged over the five trials, can be seen in Fig. 4.2 (left)
(error bars are obtained from the five different trials). The difference in accuracy be-
tween methods is not significant. Nevertheless, the methods that use the confidence
bounds perform on average slightly better that the methods that use the maximum like-
lihood estimate for the noise.

Fig. 4.2 (right) gives an example of how the HMM filtering using LWPR’s confi-
dence bounds performs when used for online context estimation. As displayed in the
inset frame, the estimation of a switch lags behind a few time steps when there are con-
text switches. The number of timesteps before correctly detecting a switch is typically
around 10, which corresponds to 0.1 seconds (since control is performed at 100 Hz).
Thus, the context switch is detected quite fast after it happens. The presence of this lag
is a natural effect of online filtering (as opposed to retrospect smoothing). However,
the HMM based methods give more stable estimates between switches compared to
the non-HMM based methods.

The context estimates were then used online for selecting the model that will pro-
vide the feedforward commands. Fig. 4.3 (left) shows the percentage of accurate online
context estimates for the four cases and Fig. 4.3 (right) shows the corresponding contri-
bution of the feedback command. Results are again averaged over the five trials. There
is a significant improvement on estimation accuracy when using the HMM based meth-
ods over the non-HMM based methods and when using the confidence bounds over the
maximum likelihood estimates. The ratio of feedback to composite command is also
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Figure 4.3: Online context estimation using the context estimates for control for the 3
DOF arm. Left: Context estimation accuracy using different estimation methods. Right:
Ratio of feedback to composite command using different estimation methods.

comparable to the ratio for the single context displayed in Fig. 3.5, when the confidence
bounds are used.

In comparison to the performance of the different methods when the estimates are
not used for control, in this more complicated and of practical interest scenario, we can
clearly see the benefit of exploiting the temporal relationship of the models and using
the input dependent confidence bounds for the noise model.

The reason why the temporal model is beneficial to context estimation has already
been discussed. It is also useful to discuss how the use of the confidence bounds
improves the context estimation accuracy. In contrast to the maximum likelihood esti-
mate, we expect the input dependent confidence bounds to give larger estimates for the
noise variance in areas of the input space that are not well learned than in well learned
areas. Thus, p(τ |θt+1,θt ,ct = k) will be more similar for different k in (4.12) and in
combination with the filtered estimates can prevent inaccurate context switching when
the predictions of models are not accurate and come close to each other.

In the previous experiments, the learned models were quite accurate. The nMSE
of the individual models was about 0.005. The last experiments, where the context
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Figure 4.4: Online context estimation using models with reduced accuracy. The context
estimates are used to control the 3 DOF arm. Left: Context estimation accuracy using
different estimation methods. Right: Ratio of feedback to composite command using
different estimation methods.

estimates were used for control, were repeated with less accurate models. This time,
the nMSE of the learned models was about 0.05. The results can be seen in Fig. 4.4.
Fig. 4.4 (left) shows the accuracy of context estimates and Fig. 4.4 (right) shows the
ratio of feedback to composite command for the different context estimation methods.
In comparison to the case where more accurate models were used (Fig. 4.3), the per-
formance has clearly dropped: the accuracy of context estimates is clearly lower and
the ratio of feedback to composite command is higher for all context estimation meth-
ods. However, the benefits of using the confidence bounds and the temporal model are
still evident when less accurate models are used, as there is significant improvement in
performance when they are used over the other methods.

Context estimation experiments were also performed with the DLR arm simulation.
Again, all four options – using the temporal or non-temporal models and a maximum
likelihood or confidence bounds based estimate for the noise variance – were tested.
For each option we run five different trials to collect statistics. In each of the trials, we
randomly switch between five of the models that were learned in Section 3.2 and each
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Figure 4.5: Online context estimation using the context estimates for control for the
DLR arm. Left: Context estimation accuracy using different estimation methods. Right:
Ratio of feedback to composite command using different estimation methods.

trial’s length is 20 iterations of the trajectory. Results are presented only for the more
interesting case where the context estimates are used for control. As it can be seen
in Fig. 4.5 (left) the use of the confidence bounds greatly improves context estimation
accuracy. The benefit of using the temporal model is apparent when the maximum
likelihood estimate is used for the noise variance, whereas it does not significantly
affect the performance when the confidence bounds are used. The estimation accuracy
is almost perfect when the confidence bounds are used. These results are also reflected
on Fig. 4.5 (right), that displays the ratio of feedback to composite command for the
four methods. The lowest ratio is given for the methods using the confidence bounds,
again with no significant difference between the non-temporal and temporal models.
It is again evident that the performance of the temporal model is far superior to the
performance of the non-temporal model when a constant noise variance is used.

It should also be noted that on all experiments, performance depended heavily on
the choice of the PD gains. When the PD gains were relatively high, the feedback
part of the command would be higher than required and would push the system far
from the desired trajectory right after switching. Given that the training data for the
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models come from a relatively small area in the dynamics space, the predictions of
the LWPR models may not be accurate in novel areas and the context estimates may
switch between contexts arbitrarily. When the gains are properly set though, the system
will not enter areas where it has not seen data and will thus be able to detect context
changes correctly, as happens in the experiments. Possible solutions to this problem
could be the use of global learning algorithms and more extensive exploration of the
input space. Furthermore, the use of the temporal model and the confidence bounds
seems to alleviate this problem.

In addition, not only the gains have to be chosen carefully, the models also have to
be sufficiently accurate for the performance of the multiple model approach to be satis-
factory. We purposefully tried to approximate the nonlinear dynamics of the DLR arm
with too smooth dynamics (i.e. we used a single very wide LWPR kernel). The learned
dynamics would roughly approximate the true dynamics (nMSE 0.09) and could poten-
tially be used for control under stationary conditions, but would be useless for control
under switching dynamics: the learned dynamics of one context could be similar to
the true and more accurately learned dynamics of other contexts and could thus result
in too frequent (and incorrect) switching between models. These have knock-on ef-
fects during control including increased tracking error, increased feedback correction
and consequently, overshoot into regions of the state space that were previously unex-
plored. As it has been shown, the use of the temporal model and the confidence bounds
does indeed help with these issues but may be unable to compensate for models that
are highly inaccurate.

It is also necessary to note that the similarity of contexts is important. In general,
the more similar the dynamics of different contexts are, the more likely it will be that
the predictions of models become entangled and will therefore be difficult to distin-
guish. It is also clear that the more the contexts differ, the less likely it will be that
inaccuracies of the learned models will be significant for context estimation. In the
previous experiments, the contexts and the corresponding learned models were fairly
different. In the experiments with the 3 DOF arm, the loads had at least 0.2 Kg differ-
ence in mass and in the experiments with the DLR arm the difference was at least 0.1
Kg (the models from Section 3.2 have been used).

In conclusion, the use of multiple models can improve performance under non-
stationarity but should be done with care. A bad choice of gains and very inaccurate
models can cause increase rather decrease of tracking errors for long periods. Thus,
there is an issue with stability and in order to benefit from the use of multiple models,
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there should be sufficient experimentation with gains and learning of models should be
as accurate as possible.

4.3.2 Data separation and learning

Next, we investigate bootstrapping of data separation (and model learning). We will
use the temporal model as it has been shown to give far superior results for context
estimation and control and also investigate learning of transition probabilities.

Figure 4.6: The solid lines show the predictions of the inverse models for the first joint
on the training data, if the models had been trained with perfectly separated data. The
dotted lines show the predictions of the models generated by the automated separation
procedure. Data separation seems to work locally but not in the whole input space.
That is, in small areas of the input space, for which a single local linear model from
each LWPR model is responsible, data can be separated well between the models and
each LWPR model seems to specialize in one context. Nevertheless, the local models
from one LWPR model may specialize in different contexts across the input space.

Experiments were performed on the 3 DOF arm. Again, when generating the
data, we switched between two different contexts with probability 0.001 at each time
step (since, as mentioned earlier, we do not want too frequent or too sparse context
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Figure 4.7: The evolution of the data separation from unlabeled data over some itera-
tions of the EM procedure. The first column displays the initial random assignment of
datapoints to contexts. The last column displays the correct context for each datapoint.
The columns in between display the most likely context for each datapoint according to
the currently learned models for some iterations of the EM procedure.

switches); however, we now do not use the correct transition probabilities in either
inference (E-step) or learning (M-step). We first collected a batch of context unla-
beled data from five cycles through the target trajectory where the arm was controlled
by pure feedback PD control. The EM procedure for data separation and learning of
transition probabilities (Section 4.2.3) was applied. Using the confidence bounds for
the noise estimates of the observation (inverse) model from the beginning of the EM
procedure did not work and made all models collapse into the same model. This is be-
cause the confidence bounds gave very large values for the noise variance. Increased
noise variances make the posteriors of all models roughly equal, resulting in all data
contributing equally to the training of the models. Eventually, after some iterations,
all posteriors become equal and all models end up being the same. What is needed is
harder division of data between models. This can be achieved by having smaller noise
variance. Indeed, using the maximum likelihood estimates works much better. How-
ever, this still does not give very good results. The problem lies in the fact that a local
learning method is used: data seem to be separated correctly locally but not globally,
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across the input space. This is demonstrated in Fig. 4.6. In small areas of the input
space, where a single local linear model from each LWPR model is mostly responsible
for, data separation works fine. However, the grouping between local models is almost
random and depends mostly on the initial random assignment of datapoints to contexts.
In some cases, data coming from relatively larger areas of the input space are separated
correctly. That is, the local models in these areas are by chance grouped correctly, but
it is rather unlikely that this will happen across the input space. A possibility would be
to try to regroup the local models to maximize the smoothness of the learned model,
however, we show here that it is possible to achieve perfect data separation by modi-
fying the EM algorithm slightly.
Improving data separation by using the confidence bounds

We note that if we manage to increase the volatility in the areas where there is mix-
ing between local models that actually belong in different contexts, the posterior of the
datapoints in that area will switch from one context to the other slower and therefore,
will reduce the mixing effect. This increase of volatility can be achieved using LWPR’s
confidence bounds: the confidence bounds increase when there is a sudden change in
the model’s prediction. Thus, we run the EM procedure using a maximum likelihood
estimate for the inverse model noise until the data is well separated locally and then
switch to using the confidence bounds. This amendment has been sufficient to solve
the problem but with some exceptions. If at the point that we start to use the confidence
bounds, there are very large or too many areas that need to be swapped between LWPR
models, then the procedure may still get stuck.
Shrinking areas that have been incorrectly separated

The way to solve this problem is to switch from using smoothed estimates in the
E-step to using filtered estimates. This effectively, together with the increased noise
levels on the edges of the areas that need to be swapped, makes the areas that are not
grouped correctly narrower and narrower in each iteration of EM. This effect is due to
the fact that, as discussed earlier, detection of context switches with filtered estimates,
lags a few time steps behind. Therefore, the posteriors near the unnecessary switches,
that are due to inaccurate grouping of local models, will reflect the correct grouping
for a while and help to train the models with the correct data.

This modified EM procedure was tried with perfect data separation always being
achieved. Fig. 4.7 displays a typical evolution of the data separation. Switching to
using the confidence bounds and the filtered instead of the smoothed estimates happens
at iteration 20. The final algorithm is summarized in Table 4.1.
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The transition probabilities are also estimated during the EM procedure. The esti-
mates were very close to the actual ones: the estimated probability is very close to the
actual ones, i.e. 0.999 staying in the same context and 0.001 switching.

Furthermore, the effect of using the wrong number of models has been examined.
The same experiment with the same two switching contexts was executed; however,
three models were used instead of two. It was found that the redundant model ruined
the data separation procedure. As it can be seen in Fig. 4.8 (a) the data has been sepa-
rated between all three models instead of two. As a first solution, it was attempted to
do the competition between the models harder by setting a lower limit on the posterior
for training the models. That is, if the posterior for some model was lower than the
threshold, the datapoint would not be used for training the model. Setting the thresh-
old to 0.05, the result in Fig. 4.8 (b) was obtained. Adding the threshold yielded the
desired result and after some point, the redundant model was not trained with any data
and eventually disappeared.

This could lead to the conclusion that it is reasonable to underestimate the number
of required models and use this thresholding or switch to hard assignment after some
point to deal with the problem of lack of knowledge of the number of contexts. Another
approach could be to use some principled model selection procedure. Model selection
works in general by computing the likelihood of the observed data D, p(D|θ) where θ
are the parameters of the model for the different models under consideration, including
a model specific penalty term. Examples include the Akaike Information Criterion
(AIC), the Bayesian Information Criterion (BIC) and Maximum a Posterior selection
(MAP). For example, in MAP a prior on the model parameters p(θ) can be set and
used to find the value for the parameters θMAP that maximize the posterior distribution
of the parameters:

θMAP = argmax
θ

log p(D|θ)+ log p(θ) (4.20)

The prior should be set accordingly and in general, it should give higher probability
to simpler models, reflecting the prior belief that simpler models are more likely to
explain data.
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Table 4.1: Pseudocode for separating offline a set of n datapoints coming from m con-
texts

s e t up s i m u l a t i o n e n v i r o n m e n t ;
f o r t = 1 : T

c o n t r o l arm u s i n g f e e d b a c k c o n t r o l ;
c o l l e c t tth movement datum ;
s w i t c h c o n t e x t w i th some low p r o b a b i l i t y ;

end

f o r t =1 :T
a s s i g n randomly t h e tth d a t a p o i n t t o a random model and t r a i n t h e model ;

end
s e t t h e maximum l i k e l i h o o d n o i s e e s t i m a t e t o some s m a l l v a l u e f o r a l l models ;

/ / F i r s t p a r t o f EM
f o r i t e r a t i o n =1: e m i t e r a t i o n s p a r t 1

compute t h e smoothed p o s t e r i o r p(ct = k|θ1:T ,τ1:T ) of each d a t a p o i n t t
u s i n g t h e maximum l i k e l i h o o d n o i s e e s t i m a t e ;
t r a i n each model k wi th each d a t a p o i n t t ,
we igh ing i t s c o n t r i b u t i o n by p(ct = k|θ1:T ,τ1:T ) ;
compute t h e maximum l i k e l i h o o d n o i s e e s t i m a t e ;

end

/ / Second p a r t o f EM
f o r i t e r a t i o n =1: e m i t e r a t i o n s p a r t 2

compute t h e f i l t e r e d p o s t e r i o r p(ct = k|θ1:t+1,τ1:t) of each d a t a p o i n t t
u s i n g t h e c o n f i d e n c e bounds f o r t h e n o i s e v a r i a n c e ;
t r a i n each model k wi th each d a t a p o i n t t ,
we igh ing i t s c o n t r i b u t i o n by p(ct = k|θ1:t+1,τ1:t) ;

end

4.4 Discussion

An approach for dealing with recurring, switching nonstationary dynamics has been
presented. It differs from previous multiple model approaches in a few points:

1. Comparing it to the approach of (Gomi and Kawato, 1993) and (Cacciatore and
Nowlan, 1994), a fully probabilistic formulation and an EM algorithm for learn-
ing has been used. Also, no gating network is used but context estimation is
based on the predictions of the models like in MPFIM and MOSAIC.

2. Comparing it to MMST, no prior knowledge on the structure of the dynamics is
used. MMST assumes dynamics whose structure is known and whose unknown
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parameters appear linearly in the equations. In our approach, no knowledge of
the functional form of the dynamics is assumed to be available.

3. The system is most closely related to MPFIM and MOSAIC. The differences are
that no pairs of forward and inverse models are used, only inverse models are
learned and context estimation is performed only based on that. Furthermore,
nonlinear dynamics models are learned and a local regression algorithm is used
for learning the models.

In short, it has been shown in this chapter that it is possible to learn multiple models
of nonlinear dynamics using no prior knowledge on the structure of the dynamics.
Furthermore, it was shown that this can be achieved without needing to learn a pair
of forward and inverse models for each context (when the inverse model is uniquely
defined). In addition, learning of the models was performed using LWPR, a state
of the art local learning algorithm that is suitable for learning dynamics models of
complicated systems. The use of a local learning method has been shown to pose
some important difficulties in learning the models from context unlabeled data: the
data is easily separated between the local models of different LWPR models that are
responsible for some area of the input space, but the local models are not grouped
correctly in LWPR models. This problem has been tackled by modifying the EM
algorithm slightly. The confidence bounds have been used to increase competition
between LWPR models in areas where they are not smooth (the areas where local
models are incorrectly grouped) and filtered instead of smoothed estimates where used
in the E-step in order to shrink the incorrectly grouped areas.
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Figure 4.8: The evolution of the data separation from unlabeled data over 80 iterations
of the EM-procedure using the wrong number of models: two contexts are present
but three models are used. The first column displays the initial random assignment of
datapoints to contexts. The last column displays the correct context for each datapoint.
The columns in between display the most likely context for each datapoint according
to the currently learned models for some iterations of the EM procedure. In (a) the
redundant model destroys the data separation procedure, whereas in (b) a threshold
has been set on the posterior probabilities for training a model and the redundant model
eventually disappears after some iterations.





Chapter 5

Continuous hidden context

The multiple model paradigm is an option for dealing with nonstationary dynamics
in motor control. Using a set of models and switching between them as the contexts
change provides much faster adaptation to nonstationary dynamics and much higher
control performance than using a single dynamics model and adapting it online. How-
ever, the multiple model paradigm has many limitations. In this chapter, some of these
shortcomings are first discussed and then, a reformulation of the probabilistic mul-
tiple model approach that was presented in Chapter 4 is proposed. Scenarios when
prior knowledge on the relationship between the context and modulation of dynamics
is known are discussed as well as solutions to cases when this is not readily available.

5.1 Disadvantages of the multiple model paradigm

The multiple model paradigm has several limitations. First, the right number of mod-
els needs to be known or estimated. Estimating the number of contexts only from
data (using some model selection procedure) may be tricky. Realistically, novel con-
texts may appear quite often and to cope with this, a novelty detection mechanism is
needed. However, even with a very robust novelty detection mechanism, we may end
up with a very large number of models, since there may be a continuum rather than
a set of possible contexts. Moreover, we would like to generalize between contexts
and most multiple model paradigms do not cope well with this. For example, Gomi’s
model (Gomi and Kawato, 1993), MPFIM (Wolpert and Kawato, 1998) and MOSAIC
(Haruno et al., 2001) assume that the context responsibilities can be used for weigh-
ing the predictions of individual models. Apart from the fact that this is clearly not
justified for systems with nonlinear dynamics, it also limits the generalization to the
convex space between the set of models.
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5.2 Generalizing between experienced contexts: con-

tinuous hidden context

In the multiple model paradigm, a discrete variable represents the context. If the con-
text is represented by a set of continuous variables there is no need to consider how
many models to use. Furthermore, assuming that there is a smooth relationship that re-
lates the change of the dynamics to the change of such continuous contextual variables,
we can hope that we will be able to learn this relationship and thus be able to achieve
generalization from a set of contexts to novel contexts. Therefore, we can attempt to
circumvent the issues with the multiple model paradigm by replacing the set of mod-
els with a single model that takes as additional input appropriate continuous hidden
contextual variables, i.e., instead of a set of gis corresponding to different contexts, a
single inverse model G is used:

τt = G(θt ,θt+1,ct) . (5.1)

Here, ct (c.f. Fig. 4.1) is not a discrete variable that indexes different models but a set
of continuous variables that provides information about the context. The probabilistic
model of the inverse dynamics would then be:

P(τ |θt ,θt+1,ct) = N (G(θt ,θt+1,ct), σ(θt ,θt+1,ct)) . (5.2)

It needs to be clear that the use of a set of continuous hidden contextual variables
allows us to deal with a continuum of contexts, regardless of how the context changes
may occur: it could deal both with a continuous change of context (e.g. a leaking
bottle) and an abrupt change of context (e.g. manipulating different tools).

The temporal version of the model (5.2) – where a dependency p(ct+1|ct) is in-
troduced – is equivalent to a state-space model. This is a class of models that is well
studied in the graphical models and statistical learning literature. An issue with state-
space models, but also with any latent variable model, is that the learned representation
of the hidden variable is not unique. The same likelihood can be achieved for the same
data θ1:T and τ1:T for different representations of the hidden variable ca1:T and cb1:T , just
by changing the observation model from pa(τ |θt ,θt+1,ct) to pb(τ |θt ,θt+1,ct). In fact,
for models with continuous latent variables there are infinite different possible repre-
sentations of the latent variable that could result in the same likelihood. Especially in
the case of a nonlinear relationship of the hidden variable to the observed, the nature
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of the representation could be completely arbitrary. Usually, some form of regulariza-
tion is used to encourage finding representations of some particular form. In general
though, learning in such models from a completely naive state is a very difficult prob-
lem. Discussion will be split in two parts. In the first (Section 5.3 and Section 5.4)
it will be assumed that prior knowledge on the nature of the contextual variables is
known and in the second (Section 5.5) that it is not.

5.3 Manipulation of objects: linearly modified dynam-

ics

A possibility for learning the augmented model is to follow the same procedure as in
the discrete case for learning the models, i.e., use EM. However, since learning in such
a model is a very difficult task in general, it is useful to exploit any prior knowledge
about the relationship of the inverse model to appropriate contextual variables. For the
case of manipulation of objects with a robot arm, this is possible. In particular, we can
take advantage of the fact that the dynamics of a robot arm has a linear relationship to
the inertial properties of the links. In other words, the inverse dynamics can be written
in the form:

J

∑
j=1

yi j(q, q̇, q̈)Tπ j = τi (5.3)

where τi is the torque applied at the ith joint, yi j(q, q̇, q̈) is a function R3J %→ R10 and
π j ∈ R10 includes the inertial parameters of the jth link

π j = [mj,mjl jx,mjl jy,mjl jz, I jxx, I jxy, I jxz, I jyy, I jyz, I jzz] (5.4)

mj is the mass, l j is the position of center of mass in the link’s reference frame and I j
is the inertia tensor of the link. It is important to note that the term yi j(q, q̇, q̈) depends
only on kinematics quantities, i.e. joint angles, velocities, accelerations, link lengths,
rotation axes etc. The above relationship can be derived based on fundamentals of
robot dynamics (Sciavicco and Siciliano, 2000; Craig, 2005) as shown in Appendix C.

5.3.1 Learning the augmented model

Now, let’s examine how this can be used to acquire the augmented model for the sce-
nario of changing loads. Indexing the dynamics in (5.3) in terms of the context we



72 Chapter 5. Continuous hidden context

have for the mth context:
J

∑
j=1

ymi j(q, q̇, q̈)
Tπmj = τmi (5.5)

The first thing to note is that the kinematics dependent terms ymi j(q, q̇, q̈) do not change
as different objects are manipulated. Only the inertial parameters of the last link of the
arm change as different loads are manipulated, i.e. the vector πmJ is different between
contexts, whereas the vectors πmj are common between all contexts 1...M for all links
1...J−1. Thus, we can define:

yi j(q, q̇, q̈) = y1
i j(q, q̇, q̈) = y2

i j(q, q̇, q̈) = ... = yMi j (q, q̇, q̈),∀i, j (5.6)

and also

π j = π1
j = π2

j = ... = πMj , for j = 1, ...,J−1 (5.7)

Then, (5.5) becomes:

(
J−1

∑
j=1

yi j(q, q̇, q̈)Tπ j)+ yiJ(q, q̇, q̈)TπmJ = τmi (5.8)

The sum ∑J−1
j=1 yi j(q, q̇, q̈)

Tπ j can be precomputed and replaced with a single function
hi(q, q̇, q̈) to obtain:

hi(q, q̇, q̈)+ yiJ(q, q̇, q̈)TπmJ = τmi (5.9)

Now, compiling the J−1 equations for the different joints we have:














τm1
τm2
...

τJ−1m















=















h1(q, q̇, q̈)
h2(q, q̇, q̈)

...
hJ(q, q̇, q̈)















+















y1J(q, q̇, q̈)T

y2J(q, q̇, q̈)T
...

yJJ(q, q̇, q̈)T















πmJ , (5.10)

which will be compactly expressed as:

τm = A(q, q̇, q̈)+B(q, q̇, q̈)πmJ (5.11)

where τm ∈ RJ , A : R3J %→ RJ and B : R3J %→ RJ×10.
It is clear that the inertial parameters πm can be used as the latent contextual vari-

ables in the augmented model G(θt ,θt+1,ct) which can then be written as:

τt = G(θt ,θt+1,ct) = A(q, q̇, q̈)+B(q, q̇, q̈)πmJ (5.12)
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Note that state transitions have been appropriately replaced by joint angles, velocities
and accelerations. This is more compactly written as:

G(θt ,θt+1,ct) = Ỹ (q, q̇, q̈)π̃mJ = τ (5.13)

where π̃mJ denotes the vector [1 πmJ ] and Ỹ (q, q̇, q̈) denotes the J×11 matrix
[A(q, q̇, q̈) B(q, q̇, q̈)].

To acquire the model, essentially means to estimate Ỹ (q, q̇, q̈). If we have
learned appropriate number of models M (that is, at least as many as the cardi-
nality of π̃m + 1 = 11) and the corresponding πm labels, we can estimate Ỹ (q, q̇, q̈)
as described below. Say, we have learned a set of learned reference models
τ1(q, q̇, q̈),τ2(q, q̇, q̈)...τM(q, q̇, q̈) corresponding to manipulation of objects which re-
sult in the last link of the arm having known inertial parameters π1

J ,π
2
J...π

M
J , then since

Ỹ (q, q̇, q̈) is shared between models we can write:
[

τ1τ2...τM
]

= Ỹ
[

π̃1
J π̃

2
J ...π̃

M
J

]

(5.14)

or more compactly:
R= Ỹ Π̃ (5.15)

Where, R : R3J %→ RJ×M is a matrix with the predictions of the reference models as
its columns and Π̃ ∈ R11×M is a matrix with the inertial parameters of the reference
models as its columns. Given that R and Π̃ are known, this is essentially a multiple
linear regression problem and thus, Ỹ (q, q̇, q̈) can be estimated as:

Ỹ (q, q̇, q̈) = RΠ̃T (Π̃Π̃T )−1 = RΠ̃+ (5.16)

where Π̃+ denotes the pseudoinverse of Π̃.
Acquisition of the augmented model is displayed in Fig. 5.1. The dots are data

belonging to different contexts. A model is fit to the data belonging to each of the
contexts (the solid lines) and then, we can use the predictions of the learned models
together with the known corresponding inertial parameters to perform multiple linear
regression and acquire the augmented inverse model for any point of the input space
(the dotted lines). Computing the augmented model for any point of the input space
gives the dynamics model of any other context (dashed lines).

It is important to note that to acquire the augmented inverse model, the regres-
sion coefficient matrix Ỹ (q, q̇, q̈) has to be evaluated (which implies the least squares
problem has to be solved) at all points in the input space. However, this is not as com-
putationally expensive as it might seem at first. All that is needed is to reevaluate the
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(Inertial parameters)
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Interpolated Dynamics

Figure 5.1: Learning the augmented inverse dynamics model using a set of learned
reference models and their corresponding inertial parameters. The dots are training
data for the different contexts. The solid lines are the learned models for each context,
the red dotted lines show the augmented model derived by the set of learned models
for some state transition and the dashed lines show the augmented model for some
new context.
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predictions of the reference inverse models at each point in input space and multiply by
the pseudoinverse of the reference inertial parameters matrix Π̃+. This pseudoinverse
needs to be evaluated once and no further matrix inversion is needed to estimate the
augmented model at any point in the input space.

The previous discussion implies that, ideally, if we have the prerequisite number
of ‘labeled’ reference models, then, one can deal with manipulation of any object. In
practice, however, since learned dynamic models will not be perfect and due to the
presence of noise in the sensor measurements, a larger number of reference models
may be necessary to give accurate estimates and achieve robust control performance.

Furthermore, it was assumed that the predictions of all models are taken equally
into account for acquiring the augmented inverse model. Nevertheless, there may be
higher confidence to the predictions of some of the reference models. In cases like
that, it would be more appropriate to use weighted least squares instead of simple least
squares as:

Ỹ (q, q̇, q̈) =WRΠ̃T (Π̃W Π̃T )−1 (5.17)

whereW gives the weighting of individual models and could come from the LWPR
confidence bounds for example. For the purposes of this study, it will be assumed
that all learned models are learned well and no weighting of the individual models’
predictions is required. Nevertheless, it will be useful to keep in mind that this may be
required for other scenarios, where some reference models may not have been learned
accurately.

5.3.2 Context estimation

The augmented model can be used both for control and context estimation purposes.
For control purposes, say we have an estimate of πm at time t, given the desired transi-
tion for the next time step, we can easily compute Ỹ (qd, q̇d, q̈d) using (5.16) and hence,
the feedforward command. For robust context estimation, we can use temporal de-
pendencies, similar to the principles used in the multiple model scenario. However,
since we now have a set of continuous hidden variables as opposed to a single discrete
context variable, the inference is slightly more involved.

With reference to (5.12), the probabilistic probabilistic formulation of the aug-
mented inverse model is

τt = G(θt ,θt+1,ct) = A(θt ,θt+1)+B(θt ,θt+1)ct +η (5.18)
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where η = N (0,Σobs). Σobs is estimated from the confidence bounds of the inverse
models that form the augmented model. Please note that for brevity we will use states
θt rather than joint angles qt and velocities q̇t .

Also, the transition model for the context needs to be defined. Since we believe
that the context does not change too fast, this is set to:

ct+1 = ct +ζ (5.19)

where ζ= N (0,Σtr) with Σtr set to a very small value.
Based on the defined model, we can write down the inference for the temporal

Bayesian network using the augmented inverse model. For control, only filtered esti-
mates (a la Kalman filtering) can be used.
We want to compute p(ct |τ1:t+1,θ1:t+1) using the estimate at the previous time
step p(ct−1 |τ1:t ,θ1:t) and the new evidence τt+1 and θt+1. The previous estimate
p(ct−1 |τ1:t ,θ1:t) is defined as:

p(ct−1 |τ1:t ,θ1:t) = N (µt−1 | t ,Σt−1 | t) (5.20)

Estimates for the next time step p(ct |τ1:t+1,θ1:t+1) are obtained in a recursive way in
two steps. The first is the prediction step where, p(ct |τ1:t ,θ1:t) is computed using the
filtered estimate on the previous time step and the transition model p(ct+1 |ct), without
taking into account evidence at time t+1:

p(ct |τ1:t ,θ1:t) = N (µt | t ,Σt | t) (5.21)

where µt | t = µt−1 | t and Σt | t = Σt | t +Σtr. Then, the filtered estimate modifies the
predicted estimates using the observation at the time t+ 1 as (dependency of A and B
on the state transition is omitted for compactness):

p(ct |τ1:t+1,θ1:t+1) = N (µt | t+1,Σt | t+1) (5.22)

where,
µt | t+1 = µt | t +Σt | tBT (BΣt | tBT +Σobs)

−1(τt+1 −A−Bµt | t) (5.23)

Σt | t+1 = Σt | t−Σt | tBT (BΣt | tBT +Σobs)
−1BΣt | t (5.24)

5.3.3 Relationship to load identification

The approach to contextual parameter estimation described is closely related to clas-
sical load estimation work in robotics, e.g. (Swevers et al., 2002, 2000; Dutkiewicz
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et al., 1993a). There are two main classes of load estimation methods. One requires
torque sensing at all joints of the robot (Olsen and Bekey, 1986; Swevers et al., 1997),
while the other requires force and torque sensing only at the wrist of the manipulator
(Atkeson et al., 1986; Dutkiewicz et al., 1993b). Both classes of methods, are based
on a linear relationship of the inertial parameters of the load and links to the dynamics
of the robot, however existing methods rely on analytically derived dynamics of the
arm in a form similar to (5.3). The method that requires torque sensing at all joints, is
essentially the approach presented previously. The other approach to load estimation
uses a similar relationship which relates linearly the torque and force applied by the
load to the last link of the robot to the inertial properties of the load πn+1 only (not
the union of the last link and load). A force and torque sensor at the wrist of the robot
(between the last link and load) provides a set of measurements and a set of new “re-
gressor matrices” is computed and a least squares problem is solved to estimate πn+1.
It is also worth noting that, estimation methods other than Kalman filtering can be used
for context estimation, e.g. recursive least squares.

There is an important issue in the described procedure that was not discussed. In
general not all inertial parameters can be identified. There are two reasons for that.
The first is that some parameters do not contribute at all in the dynamics. For example,
consider a single link robot that revolves only around the y axis, then the moments
of inertia around the x and z axes do not contribute at all in the dynamics and the
corresponding columns of Ỹ are zero. The second reason is that due to the structure
of the manipulator, some columns of Ỹ are linearly dependent. In general, the inertial
parameters can be grouped in three categories:

• Identifiable parameters, that correspond to linearly independent columns of Ỹ .

• Partially identifiable parameters, that correspond to linearly dependent columns
of Ỹ .

• Unidentifiable parameters, that do not contribute at all in the dynamics and the
corresponding columns of Ỹ are zero.

Existence of partially identifiable and unidentifiable parameters means that Ỹ is
not full rank and thus the least squares problem cannot be solved without numerical
problems. A solution is to do ridge regression instead of least squares estimation. The
accuracy of the estimates of identifiable parameters will depend on the selection of
the penalty term λ, whereas non-identifiable parameters’ estimates will in general be
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significantly erroneous. A better solution is to remove the columns of Ỹ corresponding
to unidentifiable parameters and replace the columns corresponding to partially identi-
fiable parameters by a proper linear combination. There has been some work on either
symbolically (Khalil and Bennis, 1995; Huo, 1995) or numerically (Antonelli et al.,
1999; Gautier, 1990) characterizing the identifiability of inertial parameters. The most
popular numerical approach involves doing Singular Value Decomposition on the Ỹ
matrix, for more details see (Gautier, 1990).

Classification of the inertial parameters of each link depends on the structure of
the manipulator. However, some parameters may appear to be unidentifiable for spe-
cific movements of the manipulator although they are not for others. For this purpose,
a sufficiently rich movement has to be generated and there has been some work on
finding rich movements (Swevers et al., 1997; Presse and Gautier, 1993). In general,
polynomial or sinusoidal trajectories are sufficiently rich. In the context of this study,
the richness of the movement should not be an issue, as a sinusoidal trajectory is used.
In addition, since the focus is on using local methods and particular trajectories, if
identification of only the relevant variables for these trajectories is possible, it is suffi-
cient for our purposes. Thus, we will not focus on identifiability issues and generation
of rich movements. We will assume that we know to which class each of the inertial
parameters of the compound body that comprises of the last link and load belongs.

It should be possible though to do automatic classification of the identifiability of
the inertial parameters. Since a learned set of models with their respective inertial
parameters can give an estimate of the actual regressor matrix, a sequence of estimates
can be used with a numerical algorithm like SVD to achieve this.

5.3.4 Unknown inertial parameters of the reference loads

Previous analysis relied on the fact that adequate number of reference learned dynamic
models with known inertial parameters exists. In many cases, an accurate estimate of
the parameters, even for reference loads may not be forthcoming. Can we avoid using
the real inertial parameters altogether? Consider introducing a linear s× s (where s−1
is the number of inertial parameters to be identified) transformation A and it’s inverse
between the regressor matrix and the set of inertial parameters in (5.13) like:

τ= Ỹ (q, q̇, q̈)A−1Aπ̃n (5.25)

Then (5.15) becomes:
R= ỸA−1AΠ̃ (5.26)



5.3. Manipulation of objects: linearly modified dynamics 79

and we can group the terms as:

R= (ỸA−1)(AΠ̃) (5.27)

Hence, instead of estimating Ỹ , one can estimate the transformed regressor matrix
ỸA−1 as:

ỸA−1 = RΠ̃+A−1 = RB (5.28)

Where, B = Π̃+A−1 ∈ RM×s. If we assume that we have M = s learned dynamic
models and the vectors of the inertial parameters for the different loads of the learned
models are linearly independent, then one can set B arbitrarily to any square full rank
matrix. In the case that there are more than M models, we cannot initialize the B
matrix arbitrarily since there may be no exact mapping A−1 from the pseudoinverse of
the actual parameters matrix Π̃ to the arbitrarily set B matrix. The obvious choice for
B is the identity matrix. Then, (5.28) simply becomes:

ỸA−1 = R (5.29)

In other words, the predictions of the reference models can be used for estimating the
transformed regressor matrix directly and no further computation is required. In what
follows, it will be assumed that B has been set to the identity matrix. The estimate of
the transformed regressor matrix can be used for estimating the transformed context
which can then be used for control.

In this setup, the estimated load is not an estimate of the actual load but an estimate
of a linear transformation of the load. However, when multiplied by the (automatically)
appropriately transformed regressor matrix, it gives the correct model of dynamics for
the current load.

If we have less learned models than are needed, i.e. if M < s, it is not possible
to obtain an augmented model with s− 1 hidden variables. If more learned models
are available, i.e. if M > s using only s out of the M reference learned models is
very limiting. As suggested in (Chai, 2008), a solution could be to perform Principal
Component Analysis (PCA) so that ỸA−1 is an approximation to the principal modes
of variation in R.

5.3.5 Experiments

The augmented model proposed for extracting the continuous context (latent variable)
was empirically evaluated.
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The problem was constrained in a way such that, for the three DOF robot arm used
in our simulations, only three out of the ten inertial parameters of the last link could be
estimated and thus, three contextual variables were needed to describe the augmented
model. These inertial parameters are the mass, the mass × the y− position of the center
of mass and the moment of inertia around the z axis . This was achieved by constraining
the center of mass both of the link and the object to lie on the y axis (see Fig. 5.2). Thus,
mass × the x− position and mass × the z− position are zero. Furthermore, the off-
diagonal elements of the inertia tensor are zero and only the moment of inertia around
the z axis has significant contribution to the dynamics.

Figure 5.2: In our experiments, both the center of mass of the last link ln and the load lo
are constrained to lie on the y axis of the last link’s reference frame, so that the center
of mass of their union ĺn also lies on the y axis.

In contrast to previous experiments, now both the mass and shape of the manipu-
lated object change randomly and can take any value in a specific range. We start by
not using the context estimates for control, i.e. we apply PD control and we observe
the accuracy of the context estimates. We then repeated the same experiments but us-
ing the context estimates for control to see if the resultant accuracy is sufficient for
motor control. Experiments were executed for both cases five times, using different
reference models for each of the runs. Fig. 5.3 (a) shows the estimation accuracy of
the three context variables for the no control and control cases. The error measure used
is the nMSE of the target variable. The mass and the product of y-position of the center
mass with the mass were more accurately estimated than the moment of inertia around
the y axis. Furthermore, we can see that the performance is better when estimates
are actually used for control, showing that the augmented model actually captures the
modulation of the dynamics due to the nonstationary context. Figures 5.3 (b-d) show a
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snapshot of the actual and estimated contextual variables. For the case that the context
estimates were used for control, the average ratio of feedback to composite command
was 0.1101 with standard deviation between the runs of 0.0176.
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Figure 5.3: Context estimation using the augmented inverse dynamics model. (a) nMSE
of the three contextual variables while using and not using the context estimates for
control (b-d) Actual and estimated context variables, along with the values of the context
variables of the reference models that were used for deriving the augmented model.

Finally, the same experiments were repeated without using the inertial parameters
of the reference models. However, since the estimated context is now an estimate
of an unknown linear transformation of the actual context, we cannot evaluate the
performance by comparing the estimated with the actual context. Instead we judge the
performance from the ratio of feedback to composite command. Fig. 5.4 (a) shows the
ratio of feedback to composite command for the three joints. The average ratio of the
three joints is just 0.0893 with standard deviation 0.0239 between runs. Fig. 5.4 (b)
shows the actual and reference masses (left axis) and the estimated mass (right axis).
There cannot be a direct comparison, however we observe that the evolution of the
estimate is strongly correlated to the evolution of the actual mass.
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Figure 5.4: Context estimation using the augmented inverse dynamics model (derived
without the reference models’ inertial parameters). (a) Ratio of feedback to composite
command for the three joints (b) Estimated (right axis), actual and reference models’
mass (left axis).

5.4 Inferring context from tactile sensors 1

In this section, another example of using prior knowledge on the relationship of some
hidden context to the modulation of dynamics is presented. It is demonstrated that
tactile sensing can be used for inferring the unknown mass of a manipulated object and
that this estimate can be used for control purposes in a setting similar to the one in the
previous section.

5.4.1 A simplistic model of tactile sensors

Tactile sensing is modeled as force sensing at the interface between hand and object
assuming that the hand grasps tightly the manipulated object. We first show that the
sensory values si, the ‘tactile’ forces applied by the load to the hand are linear in the
mass m held in the robot’s hand. In the reference frame of the hand, the acceleration a
of an object leads to a small displacement dx (Fig. 5.5).

1A major part of this Section, in particular, the formulation of the tactile sensors as force sensors and
the ODE implementation is work done by Heiko Hoffmann. In addition, the experiments were done in
collaboration with Heiko Hoffmann and Sebastian Bitzer. The author’s contribution was the formulation
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Object

dx
dx

u h

Sensor

Figure 5.5: A force on the object held in the robot’s hand leads to a displacement dx.
This displacement shifts each sensor at position u (relative to the object’s center) by h.

This displacement pushes each sensor by the amount hi depending on the sensor’s
position ui. Let ei be a vector of unit length pointing in the direction of ui, then hi =
eTi dx. Our sensors act like Hookean springs; thus, the resulting force equals fi = κhiei,
with κ being the spring constant. Since the object is held such that it cannot escape the
grip, the sum of sensory forces fi must equal the inertial force ma,

ma=
n

∑
i=1

fi = κ∑
i
(eTi dx)ei. (5.30)

This linear equation allows the computation of dx,
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Figure 5.6: Two-dimensional projection of sensor values during figure of 8 movements
with four different masses, indicating that the sensor values have a linear relationship
to the mass of the manipulated object. From left to right, the mass increases as 0.005,
0.01, 0.02, and 0.03.

dx=
m
κ

(ETE)−1a, (5.31)

where E is a matrix with row vectors ei. Thus, each fi is proportional to m. The total
force measured at a sensor equals fi plus a constant grip force (whose sum over all
sensors equals zero). Therefore, the sensory values s can be written as

s= s0 +mϕ(θ, θ̇, θ̈), (5.32)

of the augmented tactile model (learning and use for context inference).
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where ϕ is a function depending on the state and acceleration of the robot arm. This
linearity is illustrated in Fig. 5.6 using data from our simulated sensors. Based on
(5.32) and using a set of learned sensory models, mapping state transitions to sensory
values, an augmented sensory model that depends on the mass can be created. The
same inference as in Section 5.3 is possible using the augmented sensory model and the
estimatedm can subsequently be used for control with the augmented inverse dynamics
model to provide control commands under varying contexts.

For accurate inference of mass of an object, tactile sensors have two main advan-
tages over the method using the augmented inverse dynamics model. First, tactile
forces relate more directly to the mass m of an object: s− s0 is directly proportional
to m (s0 is constant and can be therefore accurately determined); the control torques
are proportional to m plus the mass of the end-effector link. For example, estimating
the mass of an egg using the augmented inverse dynamics model of a heavy robot arm
may be difficult. However, tactile forces may reveal this mass.

The second advantage is that the error of the mass estimate can be reduced by
increasing the number of sensors. The expected squared error of m is inversely propor-
tional to the number n of sensors. The mass m can be inferred based on the probability
density of p(s|m),

p(s|m) = ηs exp
(

−
1
2
(s− s0 −mϕ)TR−1(s− s0 −mϕ)

)

, (5.33)

where ηs is a normalization constant and R is the covariance matrix of the sensor noise.
Using Bayes’ rule and without prior knowledge of m, p(m|s) is proportional to p(s|m).
Thus, the variance σ2 of m is

σ2 =
(

ϕTR−1ϕ
)−1

=

(

n

∑
i=1

ϕ2
i /Rii

)−1

, (5.34)

where the last equality assumes that the noise from different sensors is uncorrelated (R
is diagonal). Since the variance of ϕi is proportional to Rii (because var(s) =m2var(ϕ)

if we ignore the variance of s0, which can be accurately estimated), the average of
ϕ2
i /Rii is independent of i and n. Thus, the expectation value of σ2 is inversely pro-

portional to n. Basically, with more sensors, the noise cancels out. Therefore, in the
inference from sensors case, we can use arbitrarily many sensors to reduce the noise
of m. Increasing the number of sensors seems more feasible for most cases than in-
creasing the given number of joint torques. Given these advantages and assuming that
τ(θ, θ̇, θ̈) and s(θ, θ̇, θ̈) can be learned with similar confidence boundaries, we expect a
lower variance on the m estimate from tactile sensors.
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5.4.2 Experiments

The DLR arm is again simulated using ODE. As end-effector, we attached a simple
hand with four stiff fingers; its purpose was to hold a spherical object tightly with the
help of five simulated force sensors. Furthermore, three of the joints were controlled
while the remaining joints were kept fixed. The simulated DLR arm, with the active
joints marked and the hand is displayed in Fig. 5.7

Our force sensors are small boxes attached to damped springs. In the simulation,
damped springs were realized using slider joints, whose positions were adjusted by
a PD controller. The resting position of each spring was set such that it was always
under pressure. As sensor reading s, we used the current position of a box (relative to
the resting position).

Figure 5.7: Simulated robot arm with gripper and force sensors and its real counter-
part, the DLR light-weight arm III. Arrows indicate the three active joints used for the
experiments. The curve illustrates the desired trajectory of the ball.

The task was to move a ball in a figure of eight trajectory. Three trajectories of dif-
ferent size were used: Fig. 5.7 shows the big eight; small and medium eight are 0.9 and
0.95 of the big eight’s size respectively (see Fig. 5.12). The inverse kinematics were
computed to obtain the trajectory in terms of joint angles. The length of the trajectory
was 5000 time steps (i.e. 50 seconds since simulation and control are performed at 100
Hz). For training, data points were used from the two extremal trajectories, excluding
the middle trajectory. For testing, all three trajectories were used. The maximum mass
(m= 0.03) of the ball was about one seventh of the total mass of the robot arm.

For each mass context, 10000 data points were collected. Half of these points (ev-
ery second) were used for training and the other half for testing the regression perfor-
mance. Two types of mappings were learned. The first maps the state and acceleration
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values (θ, θ̇, θ̈) onto joint torques (to obtain the augmented inverse model). The sec-
ond maps the same input onto the five sensory values (to obtain the augmented sensory
model). These mappings were trained on two different labeled masses (m1 = 0.005 and
m2 = 0.03) and were subsequently used to obtain the augmented sensory and inverse
dynamics models. Again LWPR was used to learn the individual models.

To generate training data, a PID controller was used. For testing the control per-
formance, a composite controller provided the joint torques. We have two classes of
experiments. In the first, the object’s mass was estimated using the augmented inverse
dynamics model and in the second using the augmented sensory model (similarly to
the inference in Section 5.3.2). This estimate was then used in both cases with the
augmented inverse dynamics model to provide the feedforward command.
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Figure 5.8: Inferring mass purely from dynamics. The inference results are shown for
all three trajectories. The inset shows the normalized mean square error (nMSE) of the
mass estimate. The error bars on the nMSE are min and max values averaged over an
entire trajectory.

Both inference strategies (torque based and tactile based) allowed to infer the un-
known mass accurately (Figs. 5.8 to 5.11).

Both types of mappings from state and acceleration either onto torques or onto
sensors could be learned with low regression errors, which were of the same order
(torques: for m = 0.005 the nMSE was 2.9 ∗ 10−4 and for m = 0.03 the nMSE was
2.7∗10−4; sensors: for m = 0.005 the nMSE was 1.3∗10−4 and for m = 0.03 the nMSE
was 2.2∗10−4). The error of the inferred mass was about the same for dynamics and
sensor pathway. However, the variation between trials was lower in the sensor case.

Despite the similar error, however, the sensor based mass estimate had a lower
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Figure 5.9: Inferring mass using tactile sensors. For details see Fig. 5.8.
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Figure 5.10: Inferring mass purely from dynamics. For details see Fig. 5.8.
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Figure 5.11: Inferring mass using tactile sensors. For details see Fig. 5.8.
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Figure 5.12: Tracking of three figure of eight trajectories. The true mass decreased
continuously from 0.03 to 0. The three solid red lines show the target trajectories. The
three solid black lines show tracking of the three trajectories when the tactile based
estimate is used. The three dashed green lines show tracking of the three trajectories
when the dynamics based estimate is used. The dashed purple line, shows tracking
of the large eight using low-gain PID control. Contrary to composite control with an
inverse dynamics model using the tactile or dynamics based context estimates (solid
black and dashed green lines respectively), tracking is very poor. Tracking is also not
perfect when a wrong mass estimate is used (m = 0.03, on large eight only), shown
with the dotted purple line.
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variance between trials than the dynamics based estimate (Figs. 5.8 to 5.11). This is
in agreement to the previous discussion, which argues that the prediction error can be
reduced with tactile sensors.

Nevertheless, here, in the experiments, the nMSE of the mass estimate from sensors
was about the same as the estimate from dynamics. The estimate from the sensors
lagged behind (see Figs. 5.9 and 5.11) resulting in a systematic error. This error
probably results from a characteristic of our simulated sensors, which are modeled as
damped springs and thus require a finite time to relax to their equilibrium.

Furthermore, as shown in Fig. 5.12 tracking was accurate using the context esti-
mates. The three solid red lines are the three target figure of eight trajectories. The true
mass decreased continuously from 0.03 to 0 for each trajectory. The realized trajecto-
ries using both estimation methods, tactile and dynamics based, shown with the three
solid black and the three dashed green lines, overlap with the desired trajectory. This
indicates that the context estimates were accurate and useful for control. The dotted
purple line shows tracking using a wrong context estimate (m = 0.03, on large eight
only) and illustrates that without a correct mass estimate, tracking is impaired.

5.5 Continuous hidden context: nature of context not

known

Previously, prior knowledge on the nature of the hidden contextual variables and their
relationship to the modulation of the dynamics was used to formulate an augmented
inverse dynamics model. However, such knowledge may not always be available. A
different methodology needs to be formulated to treat the problem in such cases. If
we follow the same probabilistic approach and considering that the relationship of the
contextual variables to the dynamics may be arbitrary and that the way it affects the
dynamics may be nonlinear, the linear state-space model that was formulated in the
previous sections becomes a nonlinear state-space model. As it will be discussed,
inference and learning are considerably more difficult in nonlinear state-space models
than in linear state-space models.

The problem of learning and using an augmented model without knowledge of the
nature of the context differs considerably from the same problem when there is such
knowledge. First, the augmented model does not factorize as the one presented in the
previous chapter and thus we will not be able to derive it from a set of other models: it
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will be necessary to learn it directly as a single model. Secondly, we will not be able
to use the straightforward and principled linear estimation techniques that were used
before.

We first discuss some of the existing approaches for inference and learning in non-
linear state-space models. We will then attempt to apply some techniques for nonlinear
state-space models to the problem of learning the dynamics of a robot manipulator and
controlling it under nonstationary loads.

5.5.1 Inference in nonlinear state-space models

From a graphical model point of view, a state-space model has the same structure as
an HMM. The difference is that the hidden variable is continuous rather than discrete.
Since the graphical model structure of a state-space model is the same as the HMM’s,
Bayesian inference has the same structure, but with integration, instead of summation,
over the hidden variable. Given a sequence of T observations z1:T and denoting the
continuous hidden variable at time t as xt , the main inference problem is computing
the smoothed estimate p(xt |z1:t). The smoothed posterior can be computed as:

p(xt |z1:T ) =
p(z1, ...,zt ,xt)p(zt+1, ...,zT |xt)

∫

p(z1, ...,zt ,xt)p(zt+1, ...,zT |xt)dxt
(5.35)

The term p(z1, ...,zt ,xt) is analogous to α and the term p(zt+1, ...,zT |xt) is analogous
to β in HMM inference. Again, p(z1, ...,zt ,xt) can be computed using a recursive
formulation from p(z1, ...,zt−1,xt−1) as follows:

p(z1, ...,zt ,xt) = p(zt |xt)
∫

p(z1, ...,zt−1,xt−1)p(xt |xt−1)dxt−1 (5.36)

The quantity p(zt+1, ...,zT |xt) can also be computed from p(zt+2, ...,zT |xt+1) using a
similar backward pass as:

p(zt+1, ...,zT |xt) =
∫

p(zt+2, ...,zT |xt+1)p(xt+1|zt+1)p(zt+1|zt) (5.37)

When there is a linear relationship of the hidden variables to the observed vari-
ables and a Gaussian noise model is assumed – just like in the previous formulation
of the augmented model – computing the relevant quantities exactly is possible and is
performed using the Kalman filter (or smoother) equations. We have already seen an
instance of Kalman filtering in Section 5.3.2. Nevertheless, in the case of nonlinear
observation models or non-Gaussian noise, the relevant quantities cannot be computed
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analytically. For the forward recursion for example, it is usually not possible to com-
pute the integral exactly. Thus, various approximation techniques are commonly used.
Please refer to (Arulampalam et al., 2002) for a review.

An option for approximate inference in nonlinear state-space models is extended
Kalman filtering and smoothing. This uses a linearization of the system around the
current state estimates and the resulting filtering and smoothing equations are almost
the same as the Kalman filtering and smoothing equations. Extended Kalman filtering
and smoothing can only be used for mildly nonlinear systems and will usually fail
when the linearization is not a good model of the system in the current operating state.

Another approach for inference in nonlinear state-space models is particle filter-
ing (and smoothing) . In particle filtering (and smoothing) the posterior p(xt |z1:t) (or
p(xt |z1:T ) respectively) is approximated using a set of samples xit with corresponding
weights wit , i.e. they have the form:

P

∑
i=1

witδ(xt− xit) (5.38)

Particle filtering (Doucet et al., 2001) will be presented below. For more details on
particle smoothing methods please see (Kitagawa, 1996), (Isard and Blake, 1998).

There are different variants of the particle filter. A common variant that will be
used later is presented below.

1. Sample P particles xi0 from the prior distribution p(x0). Set t = 0.

2. Evaluate the weights of the particles xit as: wit =
p(xit |zt)

∑Nj=1 p(x
j
t |zt)

3. Set t = t+1 and sample P particles from p(xit |z1:t)

4. Go to step 2

Another possibility for the E-step is to use variational methods (Jordan et al., 1999).
In variational methods, a simpler than the actual parametric form of the posterior is
assumed, e.g. a factorized distribution and the parameters of the simpler distribution
are adjusted so that they match as well as possible the actual distribution. The form of
the simpler distribution is chosen so that this match can be performed efficiently and
the relevant characteristics of the distribution are maintained.
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5.5.2 Learning nonlinear state-space models

Learning of a nonlinear state-space model clearly depends on the form of the obser-
vation and transition model. It also depends on what method is used for the inference
step (E-step).

One approach was presented in (Ghahramani and Roweis, 1999; Roweis and
Ghahramani, 2001). There, the observation model is a radial basis function network
and extended Kalman smoothing is used for inference. It turns out that the EM update
equations for this system are very similar to the EM equations for a linear state-space
model (Ghahramani and Hinton, 1996). The use of Gaussian radial basis functions
makes learning of the model computationally efficient. The centers and widths of the
kernels of the radial basis function network are fixed, however it it possible to extend
the algorithm in order to adapt these parameters as well. This approach has the disad-
vantage that a very large number of basis functions may be required for a latent space
with even a moderate number of dimensions.

Another approach is presented in (Briegel and Tresp, 1999). In the E-step, an
approximation to the posterior distribution of the latent variables is computed using
either extended Kalman smoothing or the Fisher scoring algorithm (can be used to
approximate either a single Gaussian or a mixture of Gaussians as the posterior). In the
M-step, a set of samples are generated from the approximated posterior distributions
and these are used as training data for neural networks that represent the transition and
observation models.

Another approach comes from (Valpola and Karhunen, 2002). In this work, a fully
Bayesian nonlinear state-space model is formulated and ensemble learning is used.
The model is computationally very expensive like most Bayesian techniques.

Something that needs to be noted is that in none of the mentioned approaches is
there any discussion about finding appropriate representations of the hidden variable.
In practice, one may be interested in finding representations that have some partic-
ular characteristic, e.g. being smooth or have some particular range. The approach
of (Valpola and Karhunen, 2002) seems more appropriate for achieving this as it is
straightforward to define appropriate priors on the hidden variables. The other way to
achieve the same effect is to regularize the hidden variables by setting its dynamics ap-
propriately, i.e. define the transition model in such a way that specific representations
are encouraged.
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5.5.3 Learning a nonlinear state-space model for control using

particle filtering

An EM algorithm for learning a nonlinear state-space model has been formulated.
Pseudocode for the algorithm is given in Table 5.1. For details and the derivation of
the algorithm please see Appendix D.

Table 5.1: Pseudocode for learning a nonlinear state-space model for control using
particle filtering

s e t up s i m u l a t i o n e n v i r o n m e n t ;
f o r t =1 :T

c o n t r o l arm u s i n g f e e d b a c k c o n t r o l ;
c o l l e c t tth movement datum ;
s w i t c h c o n t e x t w i th some low p r o b a b i l i t y ;

end

f o r t =1 :T
f i l l i n t h e m i s s i n g v a l u e ct f o r t h e tth d a t a p o i n t
w i th a random v a l u e and t r a i n t h e model ;

end
s e t t h e maximum l i k e l i h o o d n o i s e e s t i m a t e
o f t h e t r a n s i t i o n and o b s e r v a t i o n models t o some v a l u e s ;

/ /EM
f o r i t e r a t i o n =1: e m i t e r a t i o n s

e s t i m a t e t h e f i l t e r e d p o s t e r i o r p(ct |θ1:t+1,τ1:t)

of each d a t a p o i n t t u s i n g p a r t i c l e f i l t e r i n g ;
t r a i n t h e model wi th each d a t a p o i n t t
f i l l i n g i n t h e h id d en v a r i a b l e wi th t h e p a r t i c l e wi th t h e maximum weig h t ;
compute t h e maximum l i k e l i h o o d e s t i m a t e o f t h e
t r a n s i t i o n and o b s e r v a t i o n v a r i a n c e s u s i n g (D.19) and (D.14) ;

end

/ / T e s t i n g wi th c o m p o s i t e c o n t r o l
f o r t =1 :T

pe r fo rm p a r t i c l e f i l t e r i n g t o e s t i m a t e t h e h id d en c o n t e x t ;
c o n t r o l arm u s i n g c o m p o s i t e c o n t r o l , f i l l i n g i n t h e h id d en v a r i a b l e i n
t h e augmented i n v e r s e model wi th t h e p a r t i c l e wi th t h e maximum weig h t ;
s w i t c h c o n t e x t w i th some low p r o b a b i l i t y ;

end

In the E-step, particle filtering is used to compute the posteriors of the hidden
contextual variables. In principle, particle smoothing would be more appropriate, in
practice though it turned out to be computationally prohibitively expensive. In the
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M-step, the particles are used in combination with their weights to learn the model.
Using all the samples for training again proved computationally too expensive and in
practice, only the sample with the highest weight will be used for training. An EM
algorithm like this where samples of the posterior of the hidden variables are used for
training in the M-step is called Monte Carlo EM.

Once the nonlinear state-space model has been learned, particle filtering can be
performed for estimating the context in a nonstationary context control scenario. The
most likely sample can then be used with the augmented model to provide the feedfor-
ward command.

5.5.4 Experiments

The Monte Carlo EM algorithm in Table 5.1 has been tested on a simulated one degree
of freedom arm. The single joint of the arm allows up and down movements of the
single link. The task of the arm was to execute a sinusoidal trajectory. 400000 data-
points were first collected with the arm being controlled by PD control under randomly
changing unknown loads. In the E-step 100 particles were used (as detailed in only the
particle with the maximum weight was used in the M-step though) and 50 iterations of
the EM were executed.

As mentioned earlier, the representation of the hidden context may be arbitrary and
we may want to encourage particular solutions. In our case, after some trials it was
found that regularization could be achieved by keeping the the transition model fixed.
We used a mixture of a uniform distribution and a Gaussian with low noise (so that the
estimates do not have very large variation) as the transition model. The uniform com-
ponent of the Gaussian will be useful for handling abrupt context transitions whereas
the Gaussian will be useful for slow transitions and refining estimates when the context
remains stationary. The prior of the uniform component was set to 0.2, reflecting the
belief that most of the time the context remains the same. The variance of the Gaussian
was set to 0.001.

The context estimates along with the actual mass of the manipulated load are shown
in Fig. 5.13. The plot has two vertical axes, in the left (blue line) the actual mass of
the load is plotted, whereas in the right (red line) the estimated context is plotted. As
it can be seen, the representation of the estimated context is negatively correlated to
the actual mass of the load: when the actual mass increases, the estimated context
decreases and then the actual mass decreases, the estimated context increases. There
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is also a difference in the scale of the actual mass and the context variable. In other
experiments, the acquired representation could be positively correlated and only the
scale between the internal representation and the mass differ. The feedforward and
feedback commands are displayed in Fig. 5.14. The arm is controlled for the 20000
first datapoints by a PD controller and then a composite controller that utilizes the es-
timates is used. It is clear that the context estimates, although not directly representing
the mass (which is the main context variable in this case) are clearly useful for control:
the error-correcting feedback command is zero most of the time. Also there is almost
no tracking error (mean squared error was around 0.00001).
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Figure 5.13: Using a nonlinear state-space model for control of a one degree of freedom
arm with a nonstationary load. The blue line shows the actual mass of the load (plotted
against the left axis) and the red line shows the estimated context (plotted against the
right axis). Note that the two vertical axes have different scales. The representation of
the context matches the variation of the actual mass (it is negatively correlated to the
actual mass of the load).
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Figure 5.14: Feedback and feedforward commands using a nonlinear state-space
model for control of a one degree of freedom arm with a nonstationary load. We switch
from feedback to composite control at datapoint 20000. The fact that the feedback
command is very small after we switch to composite control implies that the feedfor-
ward command is accurate, which in turn implies that the estimated context (Fig. 5.13
is useful for control and that the augmented inverse model represents the dynamics of
the arm under different contexts successfully.
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5.6 Discussion

In this Chapter, methodologies for generalizing the experience of a limited number
of contexts to new contexts have been proposed. Two different scenarios have been
examined. In the first, prior knowledge on the relationship of the hidden context to the
modulation of the dynamics is used. This was demonstrated on two different setups
(learning an augmented inverse dynamics model and learning an augmented tactile
model). In the second scenario, no prior knowledge on the relationship of the context
to the dynamics is used. As demonstrated, learning in such a model is quite data
intensive but feasible.

Stability analysis is very difficult to perform for any of the methods developed in
this Chapter. Nevertheless, a change of context did not trigger a persistent increase of
error in any of the experiments performed.

Comparing this approach to the multiple model scenario, it has the advantage that
generalization is not only limited to the convex space between the learned set of models
(since positive context responsibilities are used in MPFIM and MOSAIC to combine
the predictions of individual models). In the case that prior knowledge is used, general-
ization is achieved in the whole space spanned by the reference models, whereas in the
case that prior knowledge is not used, generalization is also achieved at least around
the space of experienced dynamics (since local models are used for learning the aug-
mented model). In comparison to MPFIM and MOSAIC in particular, the augmented
model presented here also has the advantage that it can deal with nonlinear dynamics.
To the best of our knowledge this is the first piece of work for learning dynamics that
exhibit nonstationarity under a continuous range of contexts.





Chapter 6

Resolving nonstationarity using
observed contextual information

In previous chapters, it was attempted to resolve the problem of nonstationarity by
estimating a latent variable that describes the modulation of the dynamics. In the case
that the latent variable is discrete, it is used to select one of a set of models to use for
control. In the case that it is continuous, it is used as an additional input to the inverse
model.

These approaches were useful for scenarios where contextual information was not
contained in any observed input variables of the dynamics model. Contextual infor-
mation was reflected through the modulation of the input-output relationship of the
dynamics model. Nevertheless, in some cases, there may be some directly observed
sensory input that is closely associated with the context. For example, tactile sensing
(Section 5.4) conveys contextual information about the manipulated load, albeit in an
indirect way. When such variables that convey contextual information are directly ob-
served, a different and more effective strategy can be used: a single augmented model
of the dynamics is learned, similar to the augmented model that took as additional
input continuous latent variables, however it takes as additional input these observed
variables that carry contextual information. With reference to the schematic of Fig. 5.1,
the observed contextual variables take the place of the hidden contextual variables and
is used to disambiguate the context. There is no need for context estimation and it is
only required to directly learn an augmented model of the form

τ= G(q, q̇, q̈,S),

where S denotes the additional sensory input. The idea is illustrated in Fig. 6.1.
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inverse model

Augmented Commands

transitions
State 

variables
Contextual 

Figure 6.1: An augmented inverse model that takes as additional input sensed vari-
ables that convey contextual information.

As already hinted, for the scenario of manipulation of varying loads, this additional
sensory input S could be for example tactile sensing. Also, as we will see, this approach
is applicable even when such specific sensory input is not available.

6.1 Augmented model using tactile sensing

We have already seen that tactile sensing can be useful for control under nonstationary
conditions and extracting hidden continuous context. Tactile sensing can also be used
as the additional input of the augmented model. That is, if the tactile input is denoted
as T , we can learn the model

τ= G(q, q̇, q̈,T )

and use it for control.
As mentioned, this approach has the advantage that there is no need to do context

estimation. The disadvantage is that it requires to learn a model with a higher dimen-
sional input. If the number of additional variables is high, the model may be difficult
to learn. Pseudocode for implementing this approach is given in Table 6.1.

6.1.1 Experiments

The use for motor learning and control of an inverse model augmented with tactile
sensing has been tested experimentally on the DLR arm. The same setup and target
trajectory as in the experiments of Section 5.4 were used. 100 iterations of the tra-
jectory were repeated. with the mass of the load changing randomly. Learning of the
augmented model was executed only during the first 80 iterations, while the learned
augmented model was used as part of a composite controller as described in Table 6.1
during the whole simulation. Learning is switched off at the 80th iteration to show that
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the model is not just adapting very fast to recently seen data but is actually learning
an augmented model that is able to disambiguate between varying contexts and is also
able to generalize to novel contexts as well. Five runs were executed, with different
random changes of the load on each run. Results are presented averaged over the five
runs, with bars displaying the standard deviation between runs.

Table 6.1: Pseudocode for learning an inverse model augmented with tactile input and
using it for control

s e t up s i m u l a t i o n e n v i r o n m e n t ;
i n i t i a l i z e lwpr model ;
/ / model has ( n j o i n t s x 3 + n t a c t i l e s e n s o r s ) i n p u t s and n j o i n t s o u t p u t s ;
f o r i =1 :T

compute f e e d f o r w a r d command ;
/ / i n p u t t o lwpr model a r e t h e d e s i r e d c u r r e n t j o i n t a n g l e s ,
/ / v e l o c i t i e s , a c c e l e r a t i o n s and l a s t t a c t i l e s e n s i n g
compute f e e d b a c k command ;
a p p l y sum of f e e d f o r w a r d and f e e d b a c k command ;
s i m u l a t e and o b s e r v e t r a n s i t i o n s and t a c t i l e s e n s i n g ;
t r a i n augmented i n v e r s e model ;
/ / use as i n p u t t h e l a s t s t a t e t r a n s i t i o n and t a c t i l e s e n s i n g
/ / and as o u t p u t t h e a p p l i e d c o m p o s i t e command

end

On Fig. 6.2 (left) the ratio of feedback to composite command is displayed and
in Fig. 6.4 (right) the tracking error is displayed. Both are very low and remain low
even after learning is switched off showing that indeed the tactile sensing helps to
disambiguate the context and also that the learned model is useful for generalizing to
novel contexts as well.

6.2 Direct mapping using previous state transition and

command

The idea of the augmented model that uses observed contextual sensory input is appli-
cable even when specialized sensory input, like tactile sensing, is not available. The
idea is to use directly variables that are anyway available and describe the context, i.e.
use the variables that are used to do context estimation as the additional sensory input
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Figure 6.2: Using an inverse model augmented with tactile sensory input for control
of the 3 DOF arm. Evolution of the ratio of feedback to composite command (left) and
tracking error over 100 iterations of the target trajectory. Results are averaged over five
trials and the bars show the standard deviation between trials.

in the augmented model. That is, we learn the model:

τt = G(qt , q̇t , q̈t ,qt−1, q̇t−1, q̈t−1,τt−1) (6.1)

This depends on the previous time step’s state transition and command. This approach
is also inspired by (Gomi and Kawato, 1993), where time delayed state transitions and
commands were used as inputs to the gating network in their multiple model system.
This is an instance of an autoregressive model with exogenous inputs (ARX model)
(Ljung, 1998). If we denote the time series variable as yt and the exogenous input as
xt , an ARX model is:

yt = f (yt−1, ...yt−m,xt ,xt−1, ...xt−n). (6.2)

That is, the time series depends on the last m values of the output and the last n+1 val-
ues of the exogenous input. When the function f is nonlinear, the model is referred to
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Figure 6.3: An augmented inverse model that takes as additional input time delayed
state transitions and commands.

as a nonlinear autoregressive model with exogenous inputs (NARX model) (Leontari-
tis and Billings, 1985). The augmented model in (6.1) is a NARX model of the form
(6.2) with m = 1 and n = 1. Inclusion of higher order terms would be beneficial for
handling sensory noise (similarly to the introduction of the temporal relationship on the
hidden contextual variable in the probabilistic formulations of the previous chapters)
but would increase the input dimensionality significantly and would therefore require
more training data. When there are low levels of noise though, the last transition only
is sufficient to disambiguate the context and the model in (6.1) should be used. NARX
models have previously been used in adaptive control (Mirizarandi et al., 2005). Pseu-
docode for implementing this approach is given in Table 6.2.

Table 6.2: Pseudocode for learning an inverse model augmented with time delayed
state transition data and using it for control

s e t up s i m u l a t i o n e n v i r o n m e n t ;
i n i t i a l i z e lwpr model ;
/ / model has ( n j o i n t s x 7 ) i n p u t s and n j o i n t s o u t p u t s ;
f o r i =1 :T

compute f e e d f o r w a r d command ;
/ / i n p u t t o lwpr model a r e t h e d e s i r e d c u r r e n t j o i n t a n g l e s ,
/ / v e l o c i t i e s , a c c e l e r a t i o n s , p r e v i o u s j o i n t a n g l e s , v e l o c i t i e s ,
/ / a c c e l e r a t i o n s and l a s t a p p l i e d commands
compute f e e d b a c k command ;
a p p l y sum of f e e d f o r w a r d and f e e d b a c k command ;
s i m u l a t e and o b s e r v e t r a n s i t i o n s ;
t r a i n augmented i n v e r s e model ;
/ / use as i n p u t t h e p r e v i o u s two s t a t e t r a n s i t i o n s and p r e v i o u s
/ / c o m p o s i t e command and as o u t p u t t h e l a s t a p p l i e d c o m p o s i t e command

end
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6.2.1 Experiments

The idea of augmenting the inverse model with time delayed state transitions and com-
mands has been tested on the 3 DOF simulated robot arm. 125 iterations of the same
sinusoidal trajectory were executed, with the mass of the manipulated object changing
randomly. Five runs were repeated with different random changes of the mass in order
to collect statistics. As in the experiments with the tactile input, learning was switched
off to examine how well the learned model could cope with the nonstationary dynam-
ics, without being adapted constantly and using newly acquired experience. Learning
stopped at the 100th iteration. The results can be seen in Fig. 6.4. On Fig. 6.4 (left) the
ratio of feedback to composite command is displayed and in Fig. 6.4 (right) the track-
ing error is displayed. Similarly to the case where tactile sensing was used as input to
the augmented inverse model, both are very low and remain low even after learning is
switched off showing that indeed the time delayed state transition and command help
to disambiguate the context and that the learned model is useful for generalizing to
novel contexts as well.

6.3 Discussion

The described method has the disadvantage that a higher dimensional regression prob-
lem needs to be learned. Depending on the nature of the contextual sensors, this may
be an important issue or not. In the experiments, the additional tactile sensing was
five-dimensional. Nevertheless, data coming from real tactile sensors will in general
have much higher dimensionality. It could be argued that since LWPR uses PLS which
effectively does local dimensionality reduction, this may not be a big issue. How-
ever, it could be more appropriate in some cases to try some other preprocessing of
the additional contextual variables before actually feeding it to the augmented inverse
model.

Furthermore, although the issue of higher dimensional input may seem quite daunt-
ing, it is the case that actually a not as large part of the input space of the augmented
model is visited or explored in practice. In general, the additional variables will be
correlated to some of the other input variables. It is mostly so in the case of time
delayed state transitions and commands, the previous joint angles and velocities will
most of the time be very similar to the current joint angles and velocities and thus a
relatively small part of the input space should be relevant. Nevertheless, it should still
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Figure 6.4: Using an inverse model augmented with time delayed state transitions and
commands for control of the 3 DOF arm. Evolution of the ratio of feedback to composite
command (left) and tracking error over 120 iterations of the target trajectory. Results
are averaged over five trials and the bars show the standard deviation between trials.

be expected that – due to the increased dimensionality – more training data would be
required for learning the models sufficiently well.

Most importantly, this approach, just like the linear and nonlinear state-space mod-
els that were developed in the previous chapter, manage to generalize knowledge from
previously experienced contexts to novel contexts as well. In comparison to methods
that can also achieve generalization to novel contexts and use prior knowledge on the
relationship of the context to the modulation of the dynamics, the advantage of this
approach is that no context estimation is required and thus control is simpler. The
disadvantage is that it requires more training data, due to the higher dimensional prob-
lem. Fig. 6.5 displays this. A NARX model has been trained on the dynamics of the
3 DOF arm executing the same sinusoidal trajectory under varying loads. Five differ-
ent repetitions were executed, with increasing number of training datapoints (50000,
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100000, 200000, 300000, 400000). Each iteration was followed by testing on 100000
datapoints and for each repetition five runs were repeated to accumulate statistics. The
ratio of feedback to composite command of these five repetitions is displayed with
the red line in Fig. 6.5. In comparison, similar experiments were repeated using the
augmented inverse model with the mass as the unobserved contextual variable. Only
two reference models were used for obtaining the inverse model and again five dif-
ferent repetitions were executed with an increasing number of training datapoints that
the two reference models saw (10000, 20000, 30000, 40000, 50000). Again five dif-
ferent runs were repeated to obtain performance statistics and the ratio of feedback to
composite command can be seen with the blue line along with the standard deviation
between runs. Please note that the datapoints axis does not follow a linear scale. It can
be seen that the NARX model required 400000 datapoints to reach the performance of
the latent variable model that has been trained with 50000 datapoints. Noticing also
the bars that show the standard deviation between runs, the difference in performance
achieved with the hidden variable model using 50000 datapoints seems to be signifi-
cantly lower than the performance achieved by the NARX model using 50000, 100000,
200000 and 300000 training datapoints.

Regarding stability, there have been no experiments where a persistent increase of
error was observed. Nevertheless, stability analysis is again very difficult to perform
and therefore no firm statements about stability can be made.

In conclusion, the solution of a model that takes as additional input observed con-
textual variables may be suitable when there is no prior knowledge on the relationship
of the context to the modulation of the dynamics, albeit in a data rich environment.
If there is not much training data or if there is prior knowledge on the nature of the
context, the latent variable model seems advantageous as it can achieve superior per-
formance with less data.
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Figure 6.5: Ratio of feedback to composite command as the number of training dat-
apoints increases for a NARX model (blue line) and an augmented model where the
mass of the load is the hidden contextual variable (red line). Note that the axis on the
number of datapoints is separated in two parts and does not follow a linear scale. The
NARX model requires 400000 training datapoints to reach the ratio that the augmented
model achieves with 50000 training datapoints.





Chapter 7

Contributions and future work

This thesis examined problems that nonstationarity of dynamics due to varying con-
texts poses to the task of learning dynamics for robot control. Two goals were set:

• The first goal was to develop methods for reusing experienced dynamics in order
to improve performance when previously seen contexts reappear.

• The second goal was to develop methods for using previously experienced dy-
namics to perform well in novel contexts.

With regard to the first goal, an existing multiple model approach has been ex-
tended. With regard to the second goal, a novel approach has been formulated that uses
an augmented inverse model with input continuous contextual variables (observed or
latent) as additional input.

The contributions of this work are summarized in the next section and suggestions
for further work are given in the concluding section of the thesis.

7.1 Contributions

The contributions of this thesis are:

• Learning of multiple models of nonlinear dynamics for nonstationary con-
texts. Learning of multiple models for a set of contexts and selecting the ap-
propriate one based on the currently observed dynamics resolves the problem of
having to relearn previously experienced dynamics and improves the transient
response of the system. The use of multiple models has been studied before.
Nevertheless, either no learning was involved (MMST) or learning was limited
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to models with linear dynamics (MPFIM and MOSAIC). In this thesis, multi-
ple nonlinear models of nonstationary nonlinear dynamics are learned. A robust
local learning algorithm (LWPR) is used to learn the nonlinear dynamics and a
principled probabilistic formulation is developed to treat with model uncertain-
ties (Section 4.2). To overcome the difficulties posed by using a local learner
for the individual models, a modified Expectation Maximization algorithm (Ta-
ble 4.1), has been proposed.

• Reformulation of the probabilistic multiple model paradigm in order to deal
more effectively with continuously varying contexts for the scenario of a robot
manipulator carrying different loads (Section 5.3). A special form of a linear
state-space model is used. This relates to classic load estimation techniques
from robotics and can be referred to as load estimation using learned dynamics
models. This model uses prior knowledge on the relationship of the context to
the dynamics and is essentially able to generalize the knowledge obtained from
learning to manipulate a set of loads to other loads in a principled way .

• Use of a nonlinear state-space model to learn an augmented model of non-
stationary dynamics. This generalizes the linear state-space model that is for-
mulated in Section 4.2 and is useful when knowledge of the relationship of con-
text to the modulation of the dynamics is not known (Section 5.5).

• Learning and use for control of dynamics models augmented with observed
additional contextual variables. These additional contextual variables could
either come from proper sensory input (e.g. for the scenario of varying loads,
tactile sensing) (Section 6.1), or – if special sensory input is not available –
from time delayed input and output of the regular dynamics model (essen-
tially by using a first order nonlinear autoregressive model with exogenous in-
put)(Section 6.2). This approach is suitable when there is lack of knowledge on
the nature of the context and there is abundance of training data.

7.2 Further work

Some suggestions for further research and improvement of the methods proposed in
this thesis are discussed next.

• As discussed in Section 5.5.2, there are other methods for learning nonlinear
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state-space models and some of them could be potentially useful. For example,
the approach of (Briegel and Tresp, 1999) could provide more accurate estimates
in the E-step than particle filtering and could therefore converge faster than the
Monte Carlo EM that has been used (Table 5.1). Also, using the Bayesian model
of (Valpola and Karhunen, 2002) one could introduce priors on the parameters
of the model and could therefore encourage some preferred representation for
the hidden contextual variable.

• The data separation procedure for the multiple model paradigm that has been
described is essentially an offline batch method. As it was pointed out, since in
the E step of the EM algorithm, filtered instead of smoothed estimates are used
for learning the models (smoothed estimates are used to estimate the transition
probabilities though), it should be possible to use this approach for online data
separation. Examining if the data separation method described can be used as
the basis for a completely online scenario would be interesting.

• The augmented model with observed contextual variables may present a chal-
lenging high dimensional regression problem. This can be quite acute when
time delayed state transitions and commands are used and we have a system
with many DOFs. LWPR is appropriate for high dimensional problems since
it performs local dimensionality reduction. Nevertheless, it would be worth
examining if a preprocessing step to decrease the input dimensionality can re-
duce the complexity of the regression problem and therefore the requirement for
large amounts of data (of course without sacrificing the accuracy of the learned
model).

• Stability analysis has not been performed for any of the methods that have been
developed in this thesis. We only made empirical comments on the stability,
based on the experiments. Stability analysis of learning control systems is in
general difficult. Analysis in the proposed methods is even more difficult due to
the fact that LWPR is a complicated nonlinear regression method that depends
critically on a large number of parameters. In addition there is not much previous
work on stability of adaptive control with local models (Nakanishi et al., 2005).

• Investigation of the applicability of multi-task regression methods (Bonilla et al.,
2008; Evgeniou et al., 2005) would also be interesting as discussed in Sec-
tion 2.4. A first study can be found in (Chai et al., 2008), where multi-task
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Gaussian process regression is used to learn a set of inverse dynamics models of
a manipulator with different loads.

• Application of the developed methods to other nonstationary context scenarios.
In all experiments, nonstationarity of the dynamics was due to manipulation of
different loads. Nevertheless, all methods – with the exception of methods that
require prior knowledge on the nature of the context and the way it modulates
the dynamics – can be applied to other nonstationary contexts as well. Other
nonstationary context scenarios have already been mentioned. E.g. learning dy-
namics under different force fields or inside liquids of different viscosity. Other
interesting applications could be learning of dynamics in different gravity fields,
something that could be useful in space robotics.



Appendix A

Sample ODE code for simulating the 3
DOF arm

This Appendix provides sample C++ code for setting up the simulation of the 3 DOF
arm (Fig. 3.2) that is used in the experiments.

# inc lude <ode / ode . h>

i n t main ( i n t argc , char ∗∗ a rgv ){
/ / F i r s t c r e a t e a dynamics ODE world
dWorldID wor ld = dWor ldCrea te ( ) ;
/ / Then c r e a t e a c o l l i s i o n space
/ / ( we w i l l no t use i t i n t h i s s i m u l a t i o n )
dSpaceID s p a c e = d S i m p l e S p a c e C r e a t e ( 0 ) ; ;
/ / S e t g r a v i t y v e c t o r
d W o r l d S e t G r a v i t y ( world , 0 , 0 , −9 . 8 1 ) ;

/ / A s e t o f b od i e s
dBody ∗body ;
/ / A s e t o f h i nge j o i n t s
d H i n g e J o i n t ∗ j o i n t ;
/ / A s e t o f motors ( a t t a c h e d t o t h e moving j o i n t s )
dAMotorJo in t ∗motor ;
/ / A s e t o f f i x e d j o i n t s
d F i x e d J o i n t ∗ f i x e d ;
/ / A s e t o f box shapes ( f o r c o l l i s i o n )
dBox ∗box ;
/ / S e t t h e number o f bod i e s , boxes ,
/ / f i x e d j o i n t s , h i nge j o i n t s and motors
u i n t a r m J o i n t s =3;
u i n t Nbody , N j o i n t , Nmotor , Nbox , Nf ixed ;
Nbody=Nbox= a r m J o i n t s +1;
Nf ixed =1;
N j o i n t =Nmotor= a r m J o i n t s ;
/ / c r e a t e t h e n e c e s s a r y ODE o b j e c t s
body=new dBody [ Nbody ] ;
j o i n t =new d H i n g e J o i n t [ N j o i n t ] ;
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motor=new dAMotorJo in t [ Nmotor ] ;
box=new dBox [ Nbox ] ;
f i x e d =new d F i x e d J o i n t [ Nf ixed ] ;

/ / m a t r i c e s f o r k e ep i ng a c t u a l j o i n t a ng l e s and v e l o c i t i e s
double j o i n t a n g l e s [ N j o i n t ] ;
double j o i n t v e l o c i t i e s [ N j o i n t ] ;
double t o r q u e s [ N j o i n t ] ;
/ / mass− i n e r t i a o b j e c t
dMass m;
/ / j o i n t ang l e l i m i t s ( i n d eg r e e s )
double a n g l e =70;

/ / mass o f each l i n k
double mass = 1 . ;
/ / c r e a t e t h e body f o r t h e po l e o f t h e arm
body [ 0 ] . c r e a t e ( wor ld ) ;
/ / s e t i t s p o s i t i o n ( i n wor ld c o o r d i n a t e s a lways )
body [ 0 ] . s e t P o s i t i o n ( 0 , 0 , 0 . 5 ) ;
/ / c r e a t e t h e shape o f t h e po l e
box [ 0 ] . c r e a t e ( space , 0 . 2 , 0 . 2 , 1 . ) ;
/ / a s s o c i a t e t h e shape w i t h t h e body
box [ 0 ] . se tBody ( body [ 0 ] ) ;
/ / a t t a c h r i g i d l y t h e po l e t o t h e
/ / wor ld w i t h a f i x e d j o i n t
f i x e d [ 0 ] . c r e a t e ( wor ld ) ;
f i x e d [ 0 ] . a t t a c h ( body [ 0 ] , 0 ) ;
f i x e d [ 0 ] . s e t ( ) ;

/ / t h en c r e a t e t h e t h r e e l i n k s
/ / and j o i n t s or t h e r obo t
u i n t i , j ;
f o r ( i =1 ; i<Nbody ; i ++){

/ / c r e a t e t h e body o f t h e i ˆ t h l i n k
body [ i ] . c r e a t e ( wor ld ) ;
/ / s e t t h e l i n k ’ s p o s i t i o n
body [ i ] . s e t P o s i t i o n (0 , − .5+ i , 1 . 0 ) ;
/ / c a l c u l a t e and s e t i t s i n e r t i a l pa rame t e r s

m. se tBox ( mass , 0 . 2 , 1 . 0 , 0 . 2 ) ;
body [ i ] . s e tMass (&m) ;
/ / c r e a t e a shape o f t h e l i n k
/ / ( f o r c o l l i s i o n d e t e c t i o n )
box [ i ] . c r e a t e ( space , 0 . 2 , 1 . 0 , 0 . 2 ) ;
/ / a s s o c i a t e t h e shape w i t h t h e body
box [ i ] . se tBody ( body [ i ] ) ;

}
/ / c r e a t e t h e j o i n t s be tween t h e bod i e s
f o r ( i =0 ; i<N j o i n t ; i ++){

/ / c r e a t e t h e i ˆ t h j o i n t
j o i n t [ i ] . c r e a t e ( wor ld ) ;
/ / a t t a c h t h e two l i n k s o f t h e j o i n t
j o i n t [ i ] . a t t a c h ( body [ i ] , body [ i + 1 ] ) ;
/ / s e t t h e p o s i t i o n o f t h e j o i n t
j o i n t [ i ] . s e t A n c h o r ( 0 , ( f l o a t ) i , 1 . 0 ) ;
/ / s e t t h e a x i s o f r o t a t i o n
i f ( i ==0)
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/ / t h e f i r s t j o i n t r o t a t e s around t h e x a x i s
j o i n t [ i ] . s e t A x i s ( − 1 . , 0 . , 0 . ) ;

e l s e
/ / and t h e n e x t j o i n t s r o t a t e around t h e z a x i s
j o i n t [ i ] . s e t A x i s ( 0 . , 0 . , − 1 . ) ;

/ / s e t j o i n t ang l e l i m i t s
j o i n t [ i ] . s e t Pa r am ( dParamLoStop ,− a n g l e ) ;
j o i n t [ i ] . s e t Pa r am ( dParamHiStop , a n g l e ) ;

}
/ / I n a s i m i l a r way , we can c r e a t e ano t h e r body and
/ / a t t a c h i t t o t h e l a s t l i n k w i t h a f i x e d j o i n t
/ / t o s im u l a t e a chang ing load





Appendix B

Numerically stable inference for
Hidden Markov Models

The inference equations for the Hidden Markov Model in Section 4.2.2 and Sec-
tion 4.2.3 are not numerically stable. For example, consider the recursive update for
α(ct) in (4.15). Given that (4.15) involves a product of quantities that are smaller than
0 and usually much smaller than 0, the recursion leads very fast to very small values for
α(ct) that fall below machine precision. This Appendix gives numerically stable infer-
ence equations for a Hidden Markov Model. The discussion follows Section 13.2.4 in
Bishop (2006).

The original α(ct) variables were defined as α(ct) = p(ct ,θ1:t+1,τ1:t). We define
the normalized variables α̂(ct) as

α̂(ct) = p(ct |θ1:t+1,τ1:t) =
α(ct)

p(θ1:t+1,τ1:t)
. (B.1)

The α̂(ct) for different values of ct represent a probability distribution and should be-
have well numerically (since they sum to one). The normalized variables α̂(ct) are
essentially the filtered estimates in (4.14).

In order to relate the original variables α(ct) with the new variables α̂(ct) we in-
troduce scaling factors zt . These are defined as:

zt = p(θt+1,τt |θ1:t ,τ1:t−1) (B.2)

Then,

p(θ1:t+1,τ1:t) =
t

∏
i=1

zi (B.3)

and
α(ct) = (

t

∏
i=1

zi)α̂(ct) (B.4)
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Using (B.4) to substitute α(ct) and α(ct+1) in (4.15), we obtain the recursive formula
for α̂(ct+1):

zt+1α̂(ct+1) =∑
ct
α̂(ct)p(ct+1|ct)p(τt+1|θt+1,θt+2,ct+1) (B.5)

The scaling factor zt+1 can be very easily computed since it is the constant that nor-
malizes the right-hand side of (B.5).

Similarly, we define normalized versions of β(ct) and we obtain the following
backward recursion:

zt+1β̂(ct) = ∑
ct+1

β̂(ct+1)p(ct+1|ct)p(τt |θt ,θt+1,ct) (B.6)

The scaling factors zt are the same that were computed in the forward phase. We can
now use the α̂(ct) and β̂(ct) to obtain the smoothed estimates as:

p(ct |θ1:T ,τ1:T ) = α̂(ct)β̂(ct) (B.7)

Finally the probabilities p(ct ,ct+1 |θ1:T ,τ1:T ) are computed as:

p(ct ,ct+1 |θ1:T ,τ1:T ) = zt â(ct)p(τt+1|θt+1,θt+2,ct+1)β̂(ct+1)p(ct+1|ct) (B.8)



Appendix C

Derivation of linear relation of
dynamics to the inertial parameters

We show that the dynamics of a manipulator has a linear relationship to a properly
defined set of inertial parameters of the links. This fact is used in Section 5.3 in order to
obtain the augmented inverse dynamics model from a set of learned dynamics models.

The Lagrange formulation for deriving dynamics will be used (Sciavicco and Si-
ciliano, 2000; Spong et al., 2006). We follow closely the description in (Sciavicco and
Siciliano, 2000). We define the Lagrangian:

L = T −U (C.1)

where T is the kinetic energy of the system andU is the potential energy of the system.
Then, given that q1,q2...qn are the joint angles and τ1,τ2...τn are the generalized forces
associated with the corresponding joint angles, the dynamics are given by:

d
dt
∂L
∂q̇i

−
∂L
∂qi

= τi (C.2)

The generalized force τi, associated with joint angle qi, is a sum of joint actuator
torques, joint friction torques or other forces acting on the joint (e.g. forces induced by
contact with the environment). The total kinetic energy T is just the sum of the kinetic
energy of all the links of the manipulator:

T =
n

∑
j=1
T l j (C.3)

The kinetic energy for link j is given by:

T l j =
1
2
mlj ṗ

T
l j ṗl j +

1
2
ωTj Il jω j (C.4)
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Here, pl j is the center of mass vector of link j expressed in the base frame and ṗl j is
the linear velocity of the center of mass. Also, ω j is the vector of rotational velocity
of link j expressed in the base frame and Il j is the inertia tensor when expressed in the
base frame:

Il j =









∫

(r2
jy+ r2

jz)ρdV −
∫

r jxr jyρdV −
∫

r jxr jzρdV
−

∫

r jxr jyρdV
∫

(r2
jx+ r2

jz)ρdV −
∫

r jyr jzρdV
∫

r jxr jzρdV −
∫

r jyr jzρdV
∫

(r2
jx+ r2

jy)ρdV









(C.5)

In this, the integrals are over the volume V of the link, ρ denotes the mass density at
the point p in the link and the vector r is the position vector pminus the position vector
of the center of mass pl j . Note that the inertia tensor is symmetric, i.e. it has only six
independent elements.

The parallel axis theorem states that if we translate the position around which the
inertia tensor is evaluated, the inertia tensor becomes:

Inew = Iold +mljS
T (l)S(l) (C.6)

where l is the translation vector with elements [lx, ly, lz] and S(l) is the array:

S(l) =









0 −lz ly
lz 0 −lx
−ly lx 0









(C.7)

We will attach a reference frame to each link of the manipulator with origin instead of
at the center of mass, exactly at the joint. If the origin of the link’s reference frame
expressed in the base frame is p j, then the center of mass of the link can be written as

pl j = p j + l j (C.8)

And the linear velocity ṗl j is:

ṗl j = ṗ j +ω j× l j (C.9)

If we substitute this to the kinetic energy equation (C.4) we get:

T l j =
1
2
mlj(ṗ j +ω j× l j)T (ṗ j +ω j× l j)+

1
2
ωTj Il jω j (C.10)

The vector product can be substituted with the matrix-vector multiplication S(ω j)l j.
Using that, we get:

T l j =
1
2
mlj ṗ

T
j ṗ j + ṗTj S(ω j)mlj l j +

1
2
mlj l

T
j S(ω j)

T S(ω j)l j +
1
2
ωTj Il jω j (C.11)



121

Now, using the fact that S(a)b= −S(b)a we get:

T l j =
1
2
mlj ṗ

T
j ṗ j + ṗTj S(ω j)mlj l j +

1
2
mljω

T
j S(l j)

TS(l j)ω j +
1
2
ωTj Il jω j (C.12)

We now see that we that we can use the parallel axis theorem to express the inertia
tensor around the new coordinate frame. We get:

T l j =
1
2
mlj ṗ

T
j ṗ j + ṗTj S(ω j)mlj l j +

1
2
ωTj I

new
l j ω j (C.13)

The total potential energy U is the sum of the potential energy of all the links of the
manipulator:

U =
n

∑
j=1
U l j (C.14)

The potential energy of link j is:

U l j = −
∫

Vl j
gT0 p jρdV = −mljg

T
0 pl j (C.15)

where g0 is the gravity acceleration vector. Again using

pl j = p j + l j

we get:
U l j = −mljg

T
0 p j−mljg

T
0 l j (C.16)

Substituting (C.13) in (C.3) and (C.16) in (C.14) and then using (C.1), we obtain:

L =
n

∑
j=1

1
2
mlj ṗ

T
j ṗ j + ṗTj S(ω j)mlj l j +

1
2
ωTj I

new
l j ω j +mljg

T
0 p j +mljg

T
0 l j (C.17)

We can see that the Lagrangian has a linear relationship to the set of inertial parameters:

π j = [mlj ,mlj l jx,mlj l jy,mlj l jz, Il jxx, Il jxy, Il jxz, Il jyy, Il jyz, Il jzz] (C.18)

(we defined previously I to be a matrix, here we lay down I’s six independent elements
in a vector) the Lagrangian can be written in the form:

L =
n

∑
j=1

g j(q, q̇)Tπ j (C.19)

Since the inertial parameters in π do not depend on time or q̇ then, using (C.2), the
dynamics equation for joint i is:

n

∑
j=1

πTj
d
dt
∂g j(q, q̇)
∂q̇i

−πTj
∂g j(q, q̇)
∂qi

= τi (C.20)
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Thus, the dynamics can be written in the form

n

∑
j=1

yi j(q, q̇, q̈)Tπ j = τi (C.21)

where yi j(q, q̇, q̈) is a function R3n %→ R10 and π j ∈ R10. This last relationship shows
that the dynamics are linear in the inertial parameters vectors π j. Compiling the dy-
namics equations of the different models to a single equation we have:

Y (q, q̇, q̈)π= τ (C.22)

where Y (q, q̇, q̈) is a function R3n %→ Rn×10n and compiles the functions y as














yT11 yT12 . . . yT1n
yT21 yT22 . . . yT2n
... ... ... ...
yTn1 yTn2 . . . yTnn















(C.23)

and the vector π ∈ R10n compiles all the links’ inertial parameters as:
[

πT1 π
T
2 . . .πTn

]T
(C.24)

and τ ∈ Rn includes the torque applied at each joint.



Appendix D

Monte Carlo EM for learning a
nonlinear state-space model

We are going to develop EM (Dempster et al., 1977) update equations for learning a
nonlinear state-space model (Table 5.1). We first formulate the nonlinear state-space
model and then proceed with the EM algorithm for learning its parameters.

The state-space model has the structure of Fig. 4.1, with the difference that we will
replace states θt with joint angles qt and velocities q̇t . We have to define probability
distributions for the nodes in the graph. Let start from the observation (augmented
inverse) for τt . We will assume that – due to modeling inaccuracies – the augmented
(nonlinear) inverse model g is affected by Gaussian noise εobs with zero mean and
covarianceUobs, i.e.:

τt = g(qt , q̇t , q̈t ,ct)+ εobs (D.1)

For notational simplicity we will drop the dependency on the observed variables qt ,q̇t
and q̈t and we will simply denote g(qt , q̇t , q̈t ,ct) by gt(ct). Thus, the observation model
is given by:

p(τt |qt , q̇t , q̈t ,ct) = N (gt(ct),Uobs) (D.2)

The transition model for ct also needs to be defined. In general, we cannot expect
that the context will vary in a predictable manner. However, it is reasonable to expect
that the context ct will remain constant most of the time and we will add Gaussian
noise to deal with the state transitions, i.e.:

ct+1 = ct + εtr (D.3)

Where εtr is zero mean noise with covarianceUtr. Thus, the transition model is:

p(ct+1|ct) = N (ct ,Utr) (D.4)
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Normally, we would have to define the distributions of the variables qt and q̇t , al-
though they are assumed to be always observed. Nevertheless, we will use the graph-
ical model to do context estimation, i.e. compute the posterior p(ct |q1:t+1, q̇1:t ,τ1:t)

(filtered estimates, for control) or the posterior p(ct |q1:T , q̇1:T , q̈1:T ,τ1:T ) (smoothed
estimates, for learning) and for these knowledge of the distribution of qt and q̇t is not
required. Thus, we will not estimate the distributions for qt and q̇t – p(qt) and p(q̇t)
respectively – in the EM.

Now, having a sequence of observations q1:T , q̇1:T , q̈1:T and τ1:T the problem is to
estimate the model g in Eq. D.1 and the noise variancesUobs andUtr. We will formulate
an EM algorithm to solve this problem.

In the E-step, we will use particle methods rather than a parametric representation
for the posterior p(ct |q1:T , q̇1:T , q̈1:T ,τ1:T ) of the hidden variable given the observed
data . That is, we will use a set of samples with corresponding weights as in (5.38).
In the experiments, for computational reasons, we approximate the posterior using
filtered (Section 5.5.1) instead of smoothed estimates, since particle smoothing is very
expensive computationally.

Now, let us compute the update equations for the M-step. The complete data like-
lihood is:

P(q1:T , q̇1:T , q̈1:T ,τ1:T ,c1:T ) = p(c0)
T−1

∏
t=1

p(ct+1|ct)
T

∏
t=1

p(τt |qt , q̇t , q̈t ,ct)

T−1

∏
t=1

p(qt)
T−1

∏
t=1

p(q̇t) (D.5)

Taking the logarithm of this quantity and omitting the terms that do not depend on the
parameters that we want to estimate, we have the following expression for the complete
data log-likelihood:

logP(q1:T , q̇1:T , q̈1:T ,τ1:T ,c1:T ) = −
T

∑
t=1

(
1
2
[τt−gt(ct)]TU−1

obs[τt−gt(ct)])

−
T
2

log |Uobs|

−
T

∑
t=1

(
1
2
[ct+1 − ct ]TU−1

tr [ct+1 − ct ])

−
T −1

2
log |Utr|+ log(p(c0)) (D.6)

The prior p(c0) will not be modeled neither. If we had many data sequences we could
model it but it does not make sense to model it with only a single sequence. Instead,
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we will sample the particles at the first time step from a uniform distribution. In the
EM algorithm, we want to maximize the expected complete log-likelihood, which can
be obtained by taking the expectation of (D.6) with respect to the smoothed posterior
p(ct |q1:T , q̇1:T , q̈1:T ,τ1:T ):

Q = −
T

∑
t=1

∫

(
1
2
[τt−gt(ct)]TU−1

obs[τt−gt(ct)])p(ct |q1:T , q̇1:T , q̈1:T ,τ1:T )dct

−
T
2

log |Uobs|

−
T

∑
t=1

∫

(
1
2
[ct+1 − ct ]TU−1

tr [ct+1 − ct ])p(ct ,ct+1|q1:T , q̇1:T , q̈1:T ,τ1:T )dctdct+1

−
T −1

2
log |Utr| (D.7)

We first maximize (D.7) with respect toUobs. The terms in (D.7) that containUobs are
(after expanding):

QVobs = −
T

∑
t=1

[
1
2
τTt U

−1
obsτt−

1
2
τTt U

−1
obs

∫

gt(ct)p(ct |q1:T , q̇1:T , q̈1:T ,τ1:T )dct

−
1
2

∫

gt(ct)p(ct |q1:T , q̇1:T , q̈1:T ,τ1:T )dctU−1
obsτt

+
1
2

∫

g(qt , q̇, q̈t ,ct)TU−1
obsgt(ct)p(ct |q1:T , q̇1:T , q̈1:T ,τ1:T )dct ]

−
T
2

log |Uobs| (D.8)

Since we approximate the posterior p(ct |q1:T , q̇1:T , q̈1:T ,τ1:T ) with a set of N particles
cit with weights wit , we replace the integrals with weighted sums as:

QVobs = −
T

∑
t=1

[
1
2
τTt U

−1
obsτt−

1
2
τTt U

−1
obs

N

∑
i=1

witgt(c
i
t)

−
1
2

N

∑
i=1

witgt(c
i
t)U

−1
obsτt +

1
2

N

∑
i=1

witg(qt , q̇, q̈t ,c
i
t)
TU−1

obsgt(c
i
t)]

−
T
2

log |Uobs| (D.9)

The second and third terms in the brackets are the same, so we can sum them to obtain:

QVobs = −
T

∑
t=1

[
1
2
τTt U

−1
obsτt− τTt U

−1
obs

N

∑
i=1

witgt(c
i
t)

+
1
2

N

∑
i=1

witg(qt , q̇, q̈t ,c
i
t)
TU−1

obsgt(c
i
t)]

−
T
2

log |Uobs| (D.10)
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The derivative with respect toUobs is:

dQVobs
dUobs

= −
T

∑
t=1

[−
1
2
U−1
obsτtτ

T
t U

−1
obs +U−1

obsτt
N

∑
i=1

witgt(c
i
t)
TU−1

obs

−U−1
obs

1
2

N

∑
i=1

witg(qt , q̇, q̈t ,c
i
t)gt(c

i
t)
TU−1

obs]

−
T
2
U−1
obs (D.11)

Given thatUobs is a symmetric matrix. Setting to zero and multiplying front and back
byUobs we obtain:

0 = −
T

∑
t=1

[−
1
2
τtτ

T
t + τt

N

∑
i=1

witgt(c
i
t)
T

−
1
2

N

∑
i=1

witg(qt , q̇, q̈t ,c
i
t)gt(c

i
t)
T ]

−
T
2
Uobs (D.12)

Solving forUobs we obtain the maximization step forUobs:

Uobs =
1
T

T

∑
t=1

[τtτTt −2τt
N

∑
i=1

witgt(c
i
t)
T +

N

∑
i=1

witg(qt , q̇, q̈t ,c
i
t)gt(c

i
t)
T ] (D.13)

In practice, for computational reasons, we will collapse the set of particles to a single
particle with unit weight. The maximization step forUobs, then becomes:

Uobs =
1
T

T

∑
t=1

[τtτTt −2τtgt(cit)T +g(qt , q̇, q̈t ,cit)gt(c
i
t)
T ] (D.14)

We follow a similar procedure for maximizing (D.7) with respect to Utr. After
expanding, the terms that containUtr in ((D.7)) are:

QUtr = −
T

∑
t=1

[
1
2

∫

cTt+1U
−1
tr ct+1p(ct+1|q1:T , q̇1:T , q̈1:T ,τ1:T )dct+1

−
∫

cTt+1U
−1
tr ct p(ct ,ct+1|q1:T , q̇1:T , q̈1:T ,τt)dctct+1

+
1
2

∫

cTt U
−1
tr ct p(ct |q1:T , q̇1:T , q̈1:T ,τ1:T )dct ]

−
T −1

2
log |Utr| (D.15)

Again, substituting the integrals with weighted sums (since we approximate the poste-
riors p(ct |q1:T , q̇1:T , q̈1:T ,τ1:T ) with samples), we obtain:
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QVtr = −
T

∑
t=1

[
1
2

N

∑
i=1

witc
i
t+1

TU−1
tr c

i
t+1 −

N

∑
i=1

N

∑
j=1

witw
j
t+1c

i
t+1

T
U−1
tr c

j
t

+
1
2

N

∑
i=1

witc
i
t
TU−1

tr c
i
t ]

−
T −1

2
log |Utr| (D.16)

Taking the derivative with respect toUtr we obtain:

dQVtr
dUtr

= −
T

∑
t=1

[−
1
2
U−1
tr

N

∑
i=1

witc
i
t+1c

i
t+1U

−1
tr +U−1

tr

N

∑
i=1

N

∑
j=1

witw
j
t+1c

i
t+1c

i
t
TU−1

tr

−U−1
tr

1
2

N

∑
i=1

witc
i
tc
i
tU

−1
tr ]

+
T −1

2
U−1
tr (D.17)

Multiplying from the front and back by Utr, setting to zero and solving for Utr we get
the update equation forUtr.

Utr =
1

T −1

T

∑
t−1

[
N

∑
i=1

wit+1c
i
t+1c

i
t+1 −2

N

∑
i=1

N

∑
j=1

wit+1w
j
t cit+1c

j
t +

N

∑
i=1

witc
i
tc
i
t
T
] (D.18)

Approaching the filtered estimates with a single particle with unit weight we get the
update:

Utr =
1

T −1

T

∑
t−1

[cit+1c
i
t+1 −2cit+1c

j
t + citc

i
t
T
] (D.19)

Regarding training of the model g. The respective terms of the expected complete
log-likelihood are:

Q g = −
T

∑
t=1

−
∫ 1

2
τTt U

−1
obsgt(ct)p(ct |q1:T , q̇1:T , q̈1:T ,τ1:T )dct

−
∫ 1

2
gt(ct)TU−1

obsτt p(ct |q1:T , q̇1:T , q̈1:T ,τ1:T )dct

+
∫ 1

2
gt(ct)TU−1

obsgt(ct)p(ct |q1:T , q̇1:T , q̈1:T ,τ1:T )dct (D.20)

Replacing the integrals with weighted sums and substituting for particles we get:

Q g =
T

∑
t=1

N

∑
i=1

witτ
T
t U

−1
obsgt(c

i
t)−

N

∑
i=1

1
2
witgt(c

i
t)
TU−1

obsgt(c
i
t) (D.21)

If g took a parametric form, we could differentiate with respect to its parameters. How-
ever, LWPR is a nonparametric algorithm and thus we cannot differentiate with respect
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to any parameters. Nevertheless, we will treat g itself as a variable. Differentiating with
respect to g we get:

dQ g
dg

=
T

∑
t=1

N

∑
i=1

witU
−1
obsτt−

N

∑
i=1

witU
−1
obsgt(c

i
t) (D.22)

Setting this to zero and multiplying byUobs we get:

0 =
T

∑
t=1

N

∑
i=1

wit(τt−gt(cit)) (D.23)

Collapsing the filtered distribution to a single particle with unit weight we obtain:

0 =
T

∑
t=1

τt−gt(cit) (D.24)

This implies training the LWPR model with the particle with the largest weight.
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Hunt, K. J., Sbarbaro, D., Żbikowski, R., and Gawthrop, P. J. (1992). Neural networks
for control systems: a survey. Automatica, 28(6):1083–1112.

Huo, W. (1995). New formulas for complete determining base parameters of robots. In
Robotics and Automation, 1995. Proceedings., 1995 IEEE International Conference
on, volume 3, pages 3021–3026.

Imamizu, H., Kuroda, T., Miyauchi, S., Yoshioka, T., and Kawato, M. (2003). Modular
organization of internal models of tools in the human cerebellum. Proceedings of the
National Academy of Sciences of the United States of America, 100(9):5461–5466.

Imamizu, H., Kuroda, T., Yoshioka, T., and Kawato, M. (2004). Functional magnetic
resonance imaging examination of two modular architectures for switching multiple
internal models. Journal of Neuroscience, 24(5):1173–81.

Isard, M. and Blake, A. (1998). A smoothing filter for CONDENSATION. Lecture
Notes in Computer Science, 1406:767–781.

Jacobs, R., Jordan, M., Nowlan, S., and Hinton, G. (1991). Adaptive mixtures of local
experts. Neural Computation, 3:79–87.

Jordan, M. and Jacobs, R. (1994). Hierarchical mixtures of experts and the EM algo-
rithm. Neural Computation, 6:181–214.

Jordan, M. I. (1996). Computational aspects of motor control and motor learning.
Handbook of Perception and Action: Motor Skills.

Jordan, M. I., Ghahramani, Z., Jaakkola, T., and Saul, L. K. (1999). An introduction
to variational methods for graphical models. Machine Learning, 37(2):183–233.



134 Bibliography

Jordan, M. I. and Rumelhart, D. E. (1992). Forward models: Supervised learning with
a distal teacher. Cognitive Science, 16:307–354.

Jordan, M. I. and Wolpert, D. M. (1999). Computational motor control. The Cognitive
Neurosciences, 2nd edition.

Kaelbling, L. P., Littman, M. L., and Moore, A. P. (1996). Reinforcement learning: A
survey. Journal of Artificial Intelligence Research, 4:237–285.

Karimi, A., Landau, I. D., and Motee, N. (2001). Effects of the design parameters of
multimodel adaptive control on the performance of a flexible transmission system.
International Journal of Adaptive Control and Signal Processing, 15:335–352.

Karniel, A. and Mussa-Ivaldi, F. (2000). Does the motor control system use multiple
models and context switching to cope with a variable environment? IEEE Transac-
tions in automatic control, 45:1669–1686.

Kawato, M., Furukawa, K., and Suzuki, R. (1987). A hierarchical neural-network
model for control and learning of voluntary movement. Biological Cybernetics,
57:169–185.

Kelly, R., Santibanez, V., and Loria, A. (2005). Control of Robot Manipulators in Joint
Space. Springer.

Khalil, W. and Bennis, F. (1995). Symbolic calculation of the base inertial parameters
of closed-loop robots. International Journal of Robotics Research, 14(2):112–128.

Kitagawa, G. (1996). Monte carlo filter and smoother for non-gaussian nonlinear state
space models. Journal of Computational and Graphical Statistics, 5(1):1–25.

Kohlmorgen, J., Müller, K., and Pawelzik, K. (1994). Competing predictors segment
and identify switching dynamics. In Proceedings of the International Conference
on Artificial Neural Networks 1994, pages 1045–1048.

Kubat, M. (24-27 May 2004). Induction in time-varying domains: motivation, ori-
gins, and encouragements. In Proceedings. 11th IEEE International Conference
and Workshop on the Engineering of Computer-Based Systems, pages 316–321.

Kubat, M. and Widmer, G. (1995). Adapting to drift in continuous domains. In Pro-
ceedings of the 8th European Conference on Machine Learning, pages 307–322.
Springer.



Bibliography 135

Leontaritis, I. J. and Billings, S. A. (1985). Input-output parametric models for non-
linear systems part I: deterministic non-linear systems. International Journal of
Control, 41(2):303–328.

Liehr, S., Pawelzik, K., Kohlmorgen, J., Lemm, S., and Müller, K. (1999). Hidden
markov mixtures of experts for prediction of non-stationary dynamics. Neural Net-
works for Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal Pro-
cessing Society Workshop, pages 195–204.

Ljung, L. (1998). System Identification: Theory for the User (2nd Edition). Prentice
Hall PTR.

Mirizarandi, A.-R., Erfanian, A., and Kobravi, H.-R. (2005). Adaptive inverse control
of the knee joint position in paraplegic subject using recurrent neural network. In
Proceedings of the 10th Annual Conference of the International FES Society.

Müller, K., Kohlmorgen, J., and Pawelzik, K. (1995). Analysis of switching dynamics
with competing neural networks. IEICE Transactions on Fundamentals of Electron-
ics, Communications and Computer Sciences, pages 1306–1315.

Müller, K.-R., Mika, S., Ratsch, G., Tsuda, K., and Schölkopf, B. (Mar 2001). An
introduction to kernel-based learning algorithms. IEEE Transactions on Neural Net-
works, 12(2):181–201.

Murata, N., Müller, K.-R., Ziehe, A., and Amari, S. (1996). Adaptive on-line learning
in changing environments. In Mozer, M., Jordan, M. I., and Petsche, T., editors,
Advances in Neural Information Processing Systems, pages 599–605. MIT Press.

Nakanishi, J., Farrell, J. A., and Schaal, S. (2005). Composite adaptive control with
locally weighted statistical learning. Neural Networks, 18:71–90.

Narendra, K. S. and Annaswamy, A. M. (1989). Stable adaptive systems. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA.

Narendra, K. S. and Balakrishnan, J. (1997). Adaptive control using multiple models.
IEEE Transactions in automatic control, 42:171–187.

Narendra, K. S. and Xiang, C. (2000). Adaptive control of discrete-time systems using
multiple models. IEEE Transactions in automatic control, 45:1669–1686.



136 Bibliography

Nguyen-Tuong, D., Peters, J., Seeger, M., and Schölkopf, B. (2008). Learning inverse
dynamics: A comparison. In Verleysen, M., editor, 16th European Symposium on
Artificial Neural Networks, pages 13–18.

Ogata, K. (2001). Modern Control Engineering (4th Edition). Prentice Hall.

Olsen, H. and Bekey, G. (1986). Identification of robot dynamics. Proceedings of the
IEEE International Conference on Robotics and Automation, 3:1004–1010.

Petkos, G., Toussaint, M., and Vijayakumar, S. (2006). Learning multiple models of
non-linear dynamics for control under varying contexts. In Proceedings of Interna-
tional Conference on Artificial Neural Networks, volume 1, pages 898–907.

Petkos, G. and Vijayakumar, S. (2007a). Context estimation and learning control
through latent variable extraction: From discrete to continuous contexts. Robotics
and Automation, 2007 IEEE International Conference on, pages 2117–2123.

Petkos, G. and Vijayakumar, S. (2007b). Load estimation and control using learned
dynamics models. Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ
International Conference on, pages 1527–1532.

Presse, C. and Gautier, M. (1993). New criteria of exciting trajectories for robot iden-
tification. In ICRA (3), pages 907–912.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian Processes for Machine Learn-
ing. Adaptive Computation and Machine Learning. The MIT Press, Cambridge,
MA, USA.

Roweis, S. and Ghahramani, Z. (2001). Kalman Filtering and Neural Networks, chap-
ter Learning Nonlinear Dynamical Systems using the EM Algorithm., pages 175–
220. Wiley.

Schaal, S. and Schweighofer, N. (2005). Computational motor control in humans and
robots. Current Opinion in Neurobiology, 15(6):675–82.

Sciavicco, L. and Siciliano, B. (2000). Modelling and Control of Robot Manipulators.
Springer.

Shadmehr, R. and Wise, S. P. (2005). The Computational Neurobiology of Reaching
and Pointing. MIT Press.



Bibliography 137

Slotine, J.-J. and Li, W. (1991). Applied nonlinear control. Prentice Hall.

Smith, R. (2006). Open dynamics engine v0.5 user guide.

Spong, M., Hutchinson, S., and Vidyasagar, M. (2006). Robot modeling and control.
Wiley.

Stengel, R. (1994). Optimal control and estimation. Dover.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction
(Adaptive Computation and Machine Learning). The MIT Press.

Swevers, J., Ganseman, C., Chenut, X., and Samin, J.-C. (2000). Experimental identi-
fication of robot dynamics for control. In ICRA, pages 241–246. IEEE.

Swevers, J., Ganseman, C., Tukel, D. B., de Schutter, J., and Van Brussel, H. (1997).
Optimal robot excitation and identification. IEEE Transactions on Robotics and
Automation, 13(5):730–740.

Swevers, J., Verdonck, W., Naumer, B., Pieters, S., and Biber, E. (2002). An experi-
mental robot load identification method for industrial application. The International
Journal of Robotics Research, 21:701–712.

Thrun, S. and Mitchell, T. (1995). Lifelong robot learning. Robotics and Autonomous
Systems, 15:25–46.

Thrun, S. and Pratt, L., editors (1997). Learning To Learn. Kluwer Academic Publish-
ers.

Todorov, E. (2006). Bayesian brain, chapter Optimal control theory, pages 269–298.
MIT Press.

Valpola, H. and Karhunen, J. (2002). An unsupervised ensemble learning method for
nonlinear dynamic state-space models. Neural Computation, 14(11):2647–2692.

Vetter, P. and Wolpert, D. M. (2000). Context estimation for sensorimotor control.
Journal of Neurophysiology, 84:1026–1034.

Vijayakumar, S., D’Souza, A., and Schaal, S. (2005). Incremental online learning in
high dimensions. Neural Computation, 17:2602–2634.



138 Bibliography

Vijayakumar, S., D’Souza, A., Shibata, T., Conradt, J., and Schaal, S. (2002). Statisti-
cal learning for humanoid robots. Autonomous Robots, 12(1):55–69.
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