2,438 research outputs found

    Predicting Diffusion Reach Probabilities via Representation Learning on Social Networks

    Full text link
    Diffusion reach probability between two nodes on a network is defined as the probability of a cascade originating from one node reaching to another node. An infinite number of cascades would enable calculation of true diffusion reach probabilities between any two nodes. However, there exists only a finite number of cascades and one usually has access only to a small portion of all available cascades. In this work, we addressed the problem of estimating diffusion reach probabilities given only a limited number of cascades and partial information about underlying network structure. Our proposed strategy employs node representation learning to generate and feed node embeddings into machine learning algorithms to create models that predict diffusion reach probabilities. We provide experimental analysis using synthetically generated cascades on two real-world social networks. Results show that proposed method is superior to using values calculated from available cascades when the portion of cascades is small

    Learning Information Spread in Content Networks

    Full text link
    We introduce a model for predicting the diffusion of content information on social media. When propagation is usually modeled on discrete graph structures, we introduce here a continuous diffusion model, where nodes in a diffusion cascade are projected onto a latent space with the property that their proximity in this space reflects the temporal diffusion process. We focus on the task of predicting contaminated users for an initial initial information source and provide preliminary results on differents datasets.Comment: 4 page

    edge2vec: Representation learning using edge semantics for biomedical knowledge discovery

    Full text link
    Representation learning provides new and powerful graph analytical approaches and tools for the highly valued data science challenge of mining knowledge graphs. Since previous graph analytical methods have mostly focused on homogeneous graphs, an important current challenge is extending this methodology for richly heterogeneous graphs and knowledge domains. The biomedical sciences are such a domain, reflecting the complexity of biology, with entities such as genes, proteins, drugs, diseases, and phenotypes, and relationships such as gene co-expression, biochemical regulation, and biomolecular inhibition or activation. Therefore, the semantics of edges and nodes are critical for representation learning and knowledge discovery in real world biomedical problems. In this paper, we propose the edge2vec model, which represents graphs considering edge semantics. An edge-type transition matrix is trained by an Expectation-Maximization approach, and a stochastic gradient descent model is employed to learn node embedding on a heterogeneous graph via the trained transition matrix. edge2vec is validated on three biomedical domain tasks: biomedical entity classification, compound-gene bioactivity prediction, and biomedical information retrieval. Results show that by considering edge-types into node embedding learning in heterogeneous graphs, \textbf{edge2vec}\ significantly outperforms state-of-the-art models on all three tasks. We propose this method for its added value relative to existing graph analytical methodology, and in the real world context of biomedical knowledge discovery applicability.Comment: 10 page
    corecore