6 research outputs found

    Learning pseudo-Boolean k-DNF and Submodular Functions

    Full text link
    We prove that any submodular function f: {0,1}^n -> {0,1,...,k} can be represented as a pseudo-Boolean 2k-DNF formula. Pseudo-Boolean DNFs are a natural generalization of DNF representation for functions with integer range. Each term in such a formula has an associated integral constant. We show that an analog of Hastad's switching lemma holds for pseudo-Boolean k-DNFs if all constants associated with the terms of the formula are bounded. This allows us to generalize Mansour's PAC-learning algorithm for k-DNFs to pseudo-Boolean k-DNFs, and hence gives a PAC-learning algorithm with membership queries under the uniform distribution for submodular functions of the form f:{0,1}^n -> {0,1,...,k}. Our algorithm runs in time polynomial in n, k^{O(k \log k / \epsilon)}, 1/\epsilon and log(1/\delta) and works even in the agnostic setting. The line of previous work on learning submodular functions [Balcan, Harvey (STOC '11), Gupta, Hardt, Roth, Ullman (STOC '11), Cheraghchi, Klivans, Kothari, Lee (SODA '12)] implies only n^{O(k)} query complexity for learning submodular functions in this setting, for fixed epsilon and delta. Our learning algorithm implies a property tester for submodularity of functions f:{0,1}^n -> {0, ..., k} with query complexity polynomial in n for k=O((\log n/ \loglog n)^{1/2}) and constant proximity parameter \epsilon

    Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases

    Full text link
    Many applications of machine learning on discrete domains, such as learning preference functions in recommender systems or auctions, can be reduced to estimating a set function that is sparse in the Fourier domain. In this work, we present a new family of algorithms for learning Fourier-sparse set functions. They require at most nkklog2k+knk - k \log_2 k + k queries (set function evaluations), under mild conditions on the Fourier coefficients, where nn is the size of the ground set and kk the number of non-zero Fourier coefficients. In contrast to other work that focused on the orthogonal Walsh-Hadamard transform, our novel algorithms operate with recently introduced non-orthogonal Fourier transforms that offer different notions of Fourier-sparsity. These naturally arise when modeling, e.g., sets of items forming substitutes and complements. We demonstrate effectiveness on several real-world applications

    Learning Coverage Functions and Private Release of Marginals

    Full text link
    We study the problem of approximating and learning coverage functions. A function c:2[n]R+c: 2^{[n]} \rightarrow \mathbf{R}^{+} is a coverage function, if there exists a universe UU with non-negative weights w(u)w(u) for each uUu \in U and subsets A1,A2,,AnA_1, A_2, \ldots, A_n of UU such that c(S)=uiSAiw(u)c(S) = \sum_{u \in \cup_{i \in S} A_i} w(u). Alternatively, coverage functions can be described as non-negative linear combinations of monotone disjunctions. They are a natural subclass of submodular functions and arise in a number of applications. We give an algorithm that for any γ,δ>0\gamma,\delta>0, given random and uniform examples of an unknown coverage function cc, finds a function hh that approximates cc within factor 1+γ1+\gamma on all but δ\delta-fraction of the points in time poly(n,1/γ,1/δ)poly(n,1/\gamma,1/\delta). This is the first fully-polynomial algorithm for learning an interesting class of functions in the demanding PMAC model of Balcan and Harvey (2011). Our algorithms are based on several new structural properties of coverage functions. Using the results in (Feldman and Kothari, 2014), we also show that coverage functions are learnable agnostically with excess 1\ell_1-error ϵ\epsilon over all product and symmetric distributions in time nlog(1/ϵ)n^{\log(1/\epsilon)}. In contrast, we show that, without assumptions on the distribution, learning coverage functions is at least as hard as learning polynomial-size disjoint DNF formulas, a class of functions for which the best known algorithm runs in time 2O~(n1/3)2^{\tilde{O}(n^{1/3})} (Klivans and Servedio, 2004). As an application of our learning results, we give simple differentially-private algorithms for releasing monotone conjunction counting queries with low average error. In particular, for any knk \leq n, we obtain private release of kk-way marginals with average error αˉ\bar{\alpha} in time nO(log(1/αˉ))n^{O(\log(1/\bar{\alpha}))}
    corecore