2 research outputs found

    Finite Bivariate and Multivariate Beta Mixture Models Learning and Applications

    Get PDF
    Finite mixture models have been revealed to provide flexibility for data clustering. They have demonstrated high competence and potential to capture hidden structure in data. Modern technological progresses, growing volumes and varieties of generated data, revolutionized computers and other related factors are contributing to produce large scale data. This fact enhances the significance of finding reliable and adaptable models which can analyze bigger, more complex data to identify latent patterns, deliver faster and more accurate results and make decisions with minimal human interaction. Adopting the finest and most accurate distribution that appropriately represents the mixture components is critical. The most widely adopted generative model has been the Gaussian mixture. In numerous real-world applications, however, when the nature and structure of data are non-Gaussian, this modelling fails. One of the other crucial issues when using mixtures is determination of the model complexity or number of mixture components. Minimum message length (MML) is one of the main techniques in frequentist frameworks to tackle this challenging issue. In this work, we have designed and implemented a finite mixture model, using the bivariate and multivariate Beta distributions for cluster analysis and demonstrated its flexibility in describing the intrinsic characteristics of the observed data. In addition, we have applied our estimation and model selection algorithms to synthetic and real datasets. Most importantly, we considered interesting applications such as in image segmentation, software modules defect prediction, spam detection and occupancy estimation in smart buildings

    Novel Mixture Allocation Models for Topic Learning

    Get PDF
    Unsupervised learning has been an interesting area of research in recent years. Novel algorithms are being built on the basis of unsupervised learning methodologies to solve many real world problems. Topic modelling is one such fascinating methodology that identifies patterns as topics within data. Introduction of latent Dirichlet Allocation (LDA) has bolstered research on topic modelling approaches with modifications specific to the application. However, the basic assumption of a Dirichlet prior in LDA for topic proportions, might not be applicable in certain real world scenarios. Hence, in this thesis we explore the use of generalized Dirichlet (GD) and Beta-Liouville (BL) as alternative priors for topic proportions. In addition, we assume a mixture of distributions over topic proportions which provides better fit to the data. In order to accommodate application of the resulting models to real-time streaming data, we also provide an online learning solution for the models. A supervised version of the learning framework is also provided and is shown to be advantageous when labelled data are available. There is a slight chance that the topics thus derived may not be that accurate. In order to alleviate this problem, we integrate an interactive approach which uses inputs from the user to improve the quality of identified topics. We have also tweaked our models to be applied for interesting applications such as parallel topics extraction from multilingual texts and content based recommendation systems proving the adaptability of our proposed models. In the case of multilingual topic extraction, we use global topic proportions sampled from a Dirichlet process (DP) to tackle the problem and in the case of recommendation systems, we use the co-occurrences of words to our advantage. For inference, we use a variational approach which makes computation of variational solutions easier. The applications we validated our models with, show the efficiency of proposed models
    corecore