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Abstract

Novel Mixture Allocation Models for Topic Learning

Kamal Maanicshah

Concordia University, 2023

Unsupervised learning has been an interesting area of research in recent
years. Novel algorithms are being built on the basis of unsupervised learning
methodologies to solve many real world problems. Topic modelling is one
such fascinating methodology that identifies patterns as topics within data.
Introduction of latent Dirichlet Allocation (LDA) has bolstered research on
topic modelling approaches with modifications specific to the application.
However, the basic assumption of a Dirichlet prior in LDA for topic propor-
tions, might not be applicable in certain real world scenarios.

Hence, in this thesis we explore the use of generalized Dirichlet (GD) and
Beta-Liouville (BL) as alternative priors for topic proportions. In addition,
we assume a mixture of distributions over topic proportions which provides
better fit to the data. In order to accommodate application of the resulting
models to real-time streaming data, we also provide an online learning solu-
tion for the models. A supervised version of the learning framework is also
provided and is shown to be advantageous when labelled data are available.

There is a slight chance that the topics thus derived may not be that accu-
rate. In order to alleviate this problem, we integrate an interactive approach
which uses inputs from the user to improve the quality of identified topics.
We have also tweaked our models to be applied for interesting applications
such as parallel topics extraction from multilingual texts and content based
recommendation systems proving the adaptability of our proposed models.
In the case of multilingual topic extraction, we use global topic proportions
sampled from a Dirichlet process (DP) to tackle the problem and in the
case of recommendation systems, we use the co-occurrences of words to our
advantage.

For inference, we use a variational approach which makes computation of
variational solutions easier. The applications we validated our models with,
show the efficiency of proposed models compared to other state of the art
alternatives for the same tasks.
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Chapter 1
Introduction

1.1 Introduction and Related Work

In recent years, owing to improved data collection techniques and the intro-
duction of sensors and devices in multiple domains, the need to analyze and
understand a plethora of accumulated data is an important task. A number
of data analysis techniques based on machine learning have been proposed
over the years to analyze and understand the data. These techniques help
us identify inherent patterns and unique structure of the data. Topic mod-
elling is one such technique used for identifying patterns from documents in
the form of topics. This thesis introduces novel statistical models for topic
modelling and elaborates how they could be easily tailored to specific appli-
cations.

Topic modelling techniques were basically introduced for document re-
trieval tasks [1, 2]. However, the concept has been expanded to other do-
mains like image analysis, genome pattern recognition, etc. The underlying
principle of topic models is to identify topics within a document which are
represented by the distribution of words in the vocabulary. Each document
is considered to have a combination of these topics. This helps us in unsu-
pervised content retrieval tasks [3]. This identified topics can also be used
for classification tasks [4] and as feature extraction methods [5].

Topic modelling algorithms have evolved since the introduction of latent
semantic analysis (LSA) [1]. Latent Dirichlet allocation (LDA) proposed
in [2] was a major turn around in topic modelling research. The basic LDA
model has been modified since then to suit various applications in multiple
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domains. Further features were also integrated with the standard model to
make it more efficient. For example, in [6], the authors propose spatial LDA,
which incorporates spatial information between patches within an image re-
gion which helps in object detection. The idea revolves around the fact that
parts of an object close together might be topics belonging to the same object.
It is a semi-supervised approach designed for object detection. To integrate
time related properties to the topics learned, the authors in [7] propose to
use Hawkes process to model the frequency of texts along with the topics
learned from LDA to identify fake re-tweeters. In [8], a model is presented,
which takes into account the correlation between the topics. The authors
in [9], propose an online version of LDA to handle streaming real-time data.
One of the main attributes of LDA is that it learns the latent patterns in
an unsupervised manner. The work in [10] proposes a supervised method
without compromising the unsupervised learning part. Many more models
have been proposed recently to solve prevalent machine learning problems.

However, there are a few challenges that are to be considered while de-
signing a topic model:

• The assumption of Dirichlet prior in LDA though proven to be efficient
implies a negative covariance matrix by definition and might not pro-
vide a good fit for the document topic distribution for certain datasets.
In these cases a preferable option would be to use an alternative prior
with similar properties that overcome the drawbacks of Dirichlet dis-
tribution.

• Though the model might identify words that dominate a particular
topic, there is a chance that the topic could be adulterated with a few
words that might not belong to that topic.

• The choice of estimation method for the parameters also place a huge
role in the efficiency of the model. In general most of the topic mod-
elling algorithms use approximation methods such as variational infer-
ence or pure Bayesian method like Gibbs sampling.

1.2 Contributions

• Introduction of novel topic models for topic extraction based on mix-
tures of distributions.
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• A modified variational inference method, that eases the calculation of
variational solutions for the proposed models. In addition we also show
how these models can be modified easily to online and supervised use
cases.

• Application of the model to multi domain applications like image clas-
sification, genome classification and text classification.

• We take into account the presence of biterms in text data to build
models inculcating this information. These models are evaluated based
on their recommendation capabilities for recommendation systems.

• We show how the models can be used with Dirichlet process to be
applied for multilingual texts.

1.3 Thesis Overview

• Chapter 2: This chapter, serves as a preamble to our work detailing
the various concepts used to build the models. A brief introduction to
LDA, mixture models, etc. is given.

• Chapter 3: In this chapter we propose novel models namely latent gen-
eralized Dirichlet mixture allocation (LGDMA) and latent generalized
Beta-Liouville mixture allocation (LBLMA) models. We also detail
how these models can be converted to adopt to supervised and online
learning scenarios. We evaluate the models with standard text mining
tasks, in addition to genome and image classification.

• Chapter 4: In this chapter we explore the option to make our model in-
teractive with user inputs to extract better topics. Generally, the topics
identified by LBLMA and LGDMA models might sometime consist of
a few words which are irrelevant to that particular topic. An interac-
tive algorithm would help us to use insights from the user to improve
the quality of topics learned. Hence, we propose interactive LGDMA
(iLGDMA) and interactive LBLMA (iLBLMA) models which use user
inputs to extract better topics.

• Chapter 5: There might be cases where the subsequent words in a
document might have an impact on each other in terms of the topic
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they belong to. This use case is our concern in this chapter and we
focus on creating a model which would help us to learn these related
topics. This gives rise to the Bi-term mixture allocation models. We
use the models to build recommendation systems for anime and movie
suggestions.

• Chapter 6: Here we introduce a non parametric approach to extract
multilingal topics from parallel corpora using Dirichlet process mix-
ture allocation models. This helps us in indexing similar topics across
multiple languages which helps in multilingual document retrieval. In
addition this model avoids the need for a model selection method. We
test our models against multilingual datasets on Ted talks subtitles
which are on different subjects.

• Chapter 7: This chapter summarizes the results obtained with our work
and explains future potential research work.

1.4 Publications and Submissions

Five manuscripts have been built out of the content of this thesis. Among
them, two are submitted to journals, two have been accepted in confer-
ences and another one is under review in a conference. The details of the
manuscripts follow:

• Chapter 3:

– Kamal Maanicshah, Manar Amayri, Nizar Bougila, “Novel Mix-
ture Allocation Models for Topic Learning” is submitted to the
journal “Computational Intelligence”

• Chapter 4:

– Kamal Maanicshah, Manar Amayri, Nizar Bougila, “Interactive
Generalized Dirichlet Mixture Allocation” is published in “joint
IAPR international workshops on Statistical Techniques in Pat-
tern Recognition (SPR) and Structural and Syntactic Pattern
Recognition (SSPR)”

– Kamal Maanicshah, Manar Amayri, Nizar Bougila, “Improving
Topic Quality with Interactive Beta-Liouville Mixture Allocation
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Model” is published in “IEEE Symposium Series On Computa-
tional Intelligence (SSCI)”

• Chapter 5:

– Kamal Maanicshah, Manar Amayri, Nizar Bougila, “Novel Topic
Models for Content based Recommender Systems” is accepted
at “International Conference on Enterprise Information Systems
(ICEIS)”

• Chapter 6:

– Kamal Maanicshah, Narges Manouchehri, Manar Amayri, Nizar
Bougila, “Novel Topic Models for Parallel Topics Extraction from
Multilingual Text” is submitted to “International Journal of Com-
putational Intelligence Systems”
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Chapter 2
Background and Preliminary Concepts

When it comes to machine learning tasks, we can categorize them into three
broad categories namely, supervised, unsupervised and reinforcement learn-
ing based on their methodology [11]. Reinforcement learning is a method
where an agent learns by exploration to react to its environment [12]. Super-
vised learning can be used when we have labelled data and the task involves
identifying patterns within them [10]. However, labelled data are not widely
available for a number of tasks and hence we are in need of unsupervised
learning approaches like topic modelling, mixture models, etc, which can
learn patterns from data irrespective of the labels [13, 14]. This helps us to
cluster the data which in turn can be used to label in bulk or directly for
application specific pattern recognition tasks like bag of topics creation [15],
document indexing [16–18], software moudule categorization [19], image cat-
egorization [20], spam filtering [21], etc.

This chapter details the evolution of topic models starting with latent se-
mantic analysis in section 2.1 followed by probabilistic latent semantic analy-
sis and LDA in sections 2.2 and 2.3 respectively. The basic concepts required
for understanding our models like mixture models, parameters estimation
and choice of distribution are explained in sections 2.4, 2.5 and 2.6, followed
by other challenges faced in section 2.8.
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2.1 Latent Semantic Analysis

Topic modelling techniques caters to a set of models that are capable of rec-
ognizing patterns within data in the form of topics. LSA proposed in [1] can
be considered as the origin for research in topic modelling approaches. This
simple model uses the basic logic that words with similar themes appear more
frequently together. The model uses singular value decomposition (SVD) on
the term frequency - inverse document frequency (TF-IDF) matrix which
quantizes the occurrences of words in a vocabulary. This helps to reduce the
dimension of the feature space. If we assume that we have a document term
matrix given byM , then SVD decomposes this matrix into three components
as follows:

M = UΣV T (2.1)

where, U is the document topic matrix for K topics which is user defined,
Σ is the covariance matrix for the topics and V is the term topic matrix
respectively. The matrix U can be effectively used for document retrieval
purposes. The main drawback of this model is that we do not have an
interpretable version of the topics which could be of use for other decision
making tasks like labelling, document understanding, etc.

2.2 Probabilistic Latent Semantic Analysis

Later the same concept of identifying relevant features in documents was
rebuilt to follow a probabilistic approach [22]. The model follows a generative
technique, assuming that the probability can be generated from a set of
topics. Fig. 2.1 shows the graphical representation of the model. Here, for

Figure 2.1: Graphical representation of PLSA

a set of D documents, wdn represents the nth word among Nd words in the
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document d, Zdn indicates the affinity of the word to topics and θ⃗d represent
the probability of document d to be generated from the topics. We can write
the probability of documents to be generated as,

p(d, wdn) = p(θ⃗d)
∑

Z

p(zdn | wdn)p(zdn | θ⃗d) (2.2)

It is notable that this representation looks like a mixture model where p(θ⃗d)
can be considered as a vector of mixing proportions. However, in this case,
though we can get a good representation of the topics in the training data,
it is not possible to assign proportions to a newly seen document since each
representation of the document is like a fixed point in the dataset.

2.3 Latent Dirichlet Allocation

LDA [2] adds a Bayesian flavor to PLSA by using Dirichlet priors for the
topic word and document topic proportions. The topic word proportion is
the probability of each word in the vocabulary to belong to a particular
topic and the document topic proportions refer to the probability of that
document to belong to each of the topics. Let us consider a corpus containing
D documents which is represented as a bag of words (BoW) model. The BoW
model represents each document with a vector indicating the frequency of
each word in the vocabulary; w⃗d = {wdn}, where n = 1, 2, ..., Nd is the nth

word among the Nd words in the document d. It is to be noted that each
word wdn can also be represented as a vector of V dimensions where V is the
size of the vocabulary. For the vth word in the vocabulary, wdnv = 1 when
word wdn = v and 0 elsewhere. The belongingness of a word to a particular
topic k is denoted by a latent variable Z = {z⃗d} = {z⃗dn} with zdnk = 1
when the word belongs to topic k. The probability that a word wdnv = 1
when zdnk = 1 is assumed to be drawn from a multinomial distribution
with parameter β⃗ = {β⃗k} = {βkv}. The document topic proportions of
LDA, θdk = p(zdnk = 1) is defined by a Dirichlet distribution with parameters
σ⃗ = (σ1, σ2, ..., σK) as mentioned in Eq. 2.10. With these assumptions, the
likelihood of a set of documents W = {w⃗d} over the topic proportions and
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topic assignments is given by the equation,

p(W | σ⃗, τ⃗ , β⃗) =
D
∏

d=1

∫

[

p(θ⃗d | σ⃗)

×

Nd
∏

n=1

K
∑

k=1

p(wdnv = 1 | zdnk = 1, β⃗)p(zdnk = 1 | θ⃗d)
]

dθ⃗d

(2.3)

where, p(θ⃗d | σ⃗) is the Dirichlet prior with parameter σ⃗. The graphical model
of LDA is shown in Fig. 2.2. Based on this setup, when a new document is
looked at, a document topic proportion can still be drawn from the Dirichlet
distribution which overcomes the drawbacks of PLSA.

Figure 2.2: Graphical representation of LDA

2.4 Mixture Models

Similar to LDA, mixture models correspond to an important section of model-
based approaches for unsupervised learning of patterns within data [23, 24].
We consider the data to be derived from a mixture of distributions and
estimate the parameters of these distributions, which help in further tasks like
classification, prediction, image segmentation, image retrieval, etc. [25–27].
Though Gaussian mixture models [28] are widely used, there are others which
use non Gaussian assumption to provide a better fit to the data [29,30]. There
has been recent studies which combine both the concept of mixture models
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and LDA as explored in [31, 32] where the document topic proportions are
assumed to be sampled from a mixture of Dirichlet distributions as opposed
to one distribution in the case of LDA. This makes the model flexible to
provide a better fit to the data.

Basically, we consider that the data is generated by a weighted sum of a
number of distributions. This assumption makes mixture models useful for
clustering tasks as each different characteristic or pattern within the data
might be represented by a mixture component. Consider a dataset with D
data points represented by X = (X⃗1, X⃗2, ..., X⃗D). Each data point is a vector
of N dimensions. Assuming, there are L components within this data, we
can write the equation for the mixture model as,

p(X⃗i | π⃗,Θ) =
L
∑

l=1

πlp(X⃗i | θl) (2.4)

where, π⃗ = (π1, π2, ..., πL), Θ = {θ1, θ2, ..., θL} and p(X⃗i | θl) for the ith

document is the probability distribution from which the data is assumed to
be sampled from and can be any distribution such as Gaussian [33], Dirichlet
[34], Beta [35], etc. The parameter π⃗ represents the mixing coefficients and
strictly follows the constraints 0 ≤ πl ≤ 1 and

∑L

l=1 πl = 1. Let’s introduce
an indicator matrix Z = (z⃗1, z⃗2, ..., z⃗D) which shows the cluster membership
of each of the data points. Each vector z⃗i is a L-dimensional vector z⃗i =
(zi1, zi2, ..., ziL) with zil = 1 if data point i belongs to the cluster component
l and 0 otherwise. With this assumption, the conditional distribution of Z
given the mixing weights π⃗ can be sampled from a multinomial given by,

p(Z | π⃗) =
D
∏

i=1

L
∏

l=1

πzil
l (2.5)

Introducing this equation above in Eq. 2.4, we can write the general complete
likelihood of a mixture model as,

p(X | Z,Θ) =
D
∏

i=1

L
∏

l=1

(

πlp(X⃗i | θl)
)zil

(2.6)

2.5 Estimation of Parameters

Once the design of the model is finalized, the next challenging task is to
estimate the model parameters. Several approaches have been proposed to
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estimate the parameters of mixture models such as maximum likelihood [36],
Bayesian inference [37–39], variational Bayes [29], expectation propagation
[40], etc. Some of the methods are explained below:

2.5.1 Maximum Likelihood Estimation

When a set of data points are defined by a model, maximum likelihood
estimation (MLE) involves determining the optimal set of parameters values
that maximize the likelihood [41]. The likelihood of a model is the joint
probability of all the observed data points. We can easily find the maxima
of the likelihood function by finding the derivative of the log likelihood and
equating it to zero. However, depending on initialization values, this method
might result in identifying parameter values which are actually saddle points
which may not result in good models to fit well the data.

2.5.2 Bayesian Approach

Pure Bayesian statistical inference methods comprises of sampling algorithms
such as Markov Chain Monte Carlo (MCMC) sampling [42, 43]. MCMC
involves sampling from the target distribution until an approximate value
of the true posterior is found. Gibbs sampling is one such method which
samples new data points based on the previous samples. Though Gibbs
sampling provides a more accurate solution for the parameters, it is hard
for one to evaluate the convergence of these pure Bayesian methods [44].
Variational inference on the other hand provides an approximate solution for
the parameters instead of trying to find the true solution. Gibbs sampling
and variational inference [2, 45] are the most commonly used methods for
estimating posterior distribution in topic modelling approaches. The only
drawback of variational algorithms is that they suffer from some bias due to
initialization. In our models we use variational inference for estimating the
posterior owing to its simplicity.

2.5.3 Variational Inference

Let us assume a Bayesian framework defined by a set of N data points de-
noted by D = {d1, d2, ..., dN} with latent variables and parameters defined
by Y = {y1, y2, ..., yN}. We can find the joint distribution based on our
probabilistic model given by p(D, Y ). The objective is to find the posterior
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distribution p(D | Y ). The idea of variational inference is to approximate
this posterior to a variational distribution. Let’s say p(Q) is the variational
distribution. This variational distribution can be approximated to be the
true posterior by minimizing the distance between them. We can do this by
calculating the Kullback-Leibler (KL) divergence between the two distribu-
tions, given by,

KL(Q || P ) = −

∫

Q
(

Z
)

ln

(

p
(

D | Z
)

Q
(

Z
)

)

dZ (2.7)

Simplifying this equation we have,

KL(Q || P ) = ln p(D)− L(Q) (2.8)

where,

L(Q) =

∫

Q
(

Z
)

ln

(

p
(

D,Z
)

Q
(

Z
)

)

dZ (2.9)

From these equations, we can see that maximizing the lower bound given
by L(Q) minimizes the KL divergence between the true posterior P and
variational distribution Q. Based on this idea, an approximate solution for
the true posterior can be found.

In general the variational approach followed for topic models is as shown
in [2]. Here the variational lower bound is used as a surrogate for the marginal
likelihood. By setting the derivative of the lowerbound to zero the maxima
for each of the parameters can be calculated. However, using this method
resulted in intractable solutions for our model. Hence we adopted the vari-
ational method followed by the authors in [29] which made the derivation
of solutions easier. In this case, we work on deriving a variational solution
which are in the form of the prior distribution. The update functions of
the two can be found by equating the parameters. The method is clearly
explained in Appendix A.

2.6 Choice of Distributions

It is also important to consider the choice of distributions for the priors to
achieve better performance with topic models. A few of them that concerns
our models are described in this section.
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2.6.1 Dirichlet Distribution

The Dirichlet distribution is a multivariate generalization of Beta distribu-
tion. A Dirichlet distribution is defined by,

Dir(θ⃗ | σ) =
Γ(
∑K

k=1 σk)
∏K

k=1 Γ(σk)

K
∏

k=1

θσk−1
k (2.10)

where, σ⃗ = (σ1, σ2, ..., σK) represent the parameters of a random variable θ⃗ =
(θ1, θ2, ..., θK) with K dimensions. The Dirichlet distribution has a negative
covariance structure. However, there is a possibility that the covariance
might be positive in which case Dirichlet distribution might not give a good
fit to the data. There has been some research on finding an alternative
for Dirichlet distribution as prior for the document topic proportions. For
example, authors in [46–49] use Poisson point process, generalized Dirichlet
(GD) and Beta-Liouville (BL) as efficient alternatives for the Dirichlet prior.

2.6.2 Generalized Dirichlet Distribution

GD is one such distribution which has been shown to provide a better fit for
those random variables with general covariance [50–53]. Consider a random

variable θ⃗ = (θ1, θ2, ..., θK), where K is the dimension of the vector. θ⃗ follows
the constraints θk ≥ 0 and

∑K

k=1 θk < 1. The probability density function of

θ⃗k following a GD distribution is given by,

GD(θ⃗ | σ⃗, τ⃗) = p(θ⃗ | σ⃗, τ⃗) =
K
∏

k=1

Γ(σk + τk)

Γ(σk)Γ(τk)
θσk−1
k

(

1−
k
∑

j=1

θj

)γk

(2.11)

where, τ⃗ = (τ1, τ2, ..., τK), σ⃗ = (σ1, σ2, ..., σK) with γk = τk − τk+1 − σk+1 for
k = 1, 2, ..., K − 1 and γk = σk − 1 for k = K.

2.6.3 Beta-Liouville Distribution

Though the GD seems to be an effective choice, twice the number of pa-
rameters as compared to the Dirichlet is to be estimated. This led to use
the BL distribution, in some works, as an alternative since it also allows
a positive covariance matrix [54–56]. Similar to the previous definition, let
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θ⃗ = (θ1, θ2, ..., θK) be the random variable with K dimensions with the same
constraints θk ≥ 0 and

∑K

k=1 θk < 1. The BL distribution is defined as,

BL(θ⃗ | µ⃗, σ, τ) =
K
∏

k=1

Γ(
∑K

k=1 µk)

Γ(µk)

Γ(σ + τ)

Γ(σ)Γ(τ)
θ
µk−1
k

×
[

K
∑

k=1

θk

]σ−
∑

K

k=1 µk
[

1−
K
∑

k=1

θk

]τ−1

(2.12)

where, µ⃗ = (µ1, µ2, ..., µK), σ and τ are parameters of the Beta-Liouville
distribution. These distributions can serve as effective priors to be used for
topic modelling tasks [48].

2.6.4 Dirichlet Process

A Dirichlet process (DP) can be thought of as an extension of the Dirichlet
distribution, where each sample can be considered as a distribution in itself.
This can be of help for infinite cases where the model complexity is not
known. There are a few realizations of DP that are widely used [57, 58].
In this thesis we use the stick breaking definition to build our model as it
makes inference easier. According to this definition, when a stick of length l is
broken, we assume the length of the broken section to be sampled from a Beta
distribution, βc ∼ Beta(1, α). Here α is the parameter of Beta distribution
and c represents the cth broken piece from the stick. If {πc}

∞
c=1 is the total

number of pieces the stick is broken into, then the length of each broken stick
can be defined as,

πc = βc

c−1
∏

j=1

(

1− βj

)

(2.13)

This stick-breaking representation of DP could be used as prior for the mixing
weights in mixture models [59].

2.7 Evaluation Methods for Topic Models

Evaluation of topic models is a challenging task since it is an unsupervised
approach. However, there are some methods usually followed to check the
quality of extracted topics. The basic approach would be to list the top
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words in each topic to see if they represent that topic. However, following
eye balling approaches like this would make it hard for us to compare results
from different models. Quantitative evaluation of topic models can be divided
into two groups: extrinsic and intrinsic methods.

2.7.1 Extrinsic Methods

Extrinsic methods does not directly measure the quality of the extracted
topics. Instead, we evaluate the quality based on the task at hand. For
example, if we are using the extracted topics for a classification task, the
best quality topics might consequently result in good classification accuracy.
In Chapters 3 and 5 we evaluate our models based on classification accuracy
and recommendation relevancy which are good examples of this kind.

2.7.2 Intrinsic Methods

Evaluation methods such as perplexity, topic coherence, etc. come under
the umbrella of intrinsic evaluation. Perplexity is one of the methods used
for topic evaluation. According to this method, we split the data set into
training and testing sets and find the perplexity of each document in the test
set, based on the formula,

Perplexity(w⃗d test) = exp

{

−

∑D

d=1 ln p(w⃗d)
∑D

d=1Nd

}

(2.14)

Here, w⃗d test is the word vector for a test document, w⃗d is the word vector
of dth document in the training set containing D documents and Nd is the
number of words in the dth document. However, perplexity is not considered
to be an accurate depiction of topic quality because it considers only the
occurrence of the particular word within the topic. In addition, the method
also requires us to split the data into train and test sets which might affect
the quality as well.

In general coherence measures which include the co-occurrences of words
within the topic tend to reflect the quality of topics more accurately. UMass
coherence score [60], is one such method used to calculate the relevancy
of words within the topic. For each of the topics, the coherence score is
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calculated by using the formula,

scoreUMass(k) =

Mk
∑

i=2

Mk−1
∑

j=1

log
p(wi, wj) + 1

p(wi)
(2.15)

where Mk is the set of words in a topic with wi and wj being the ith and jth

words in the topic. This metric is used for evaluating our models in Chapters
4 and 6.

2.8 Other Challenges

The main advantage of topic models in general is that it can be easily adopted
to handle challenges specific to the data. The novel structure of the models
introduced in this work also proposed its own challenges which need to be
addressed. This thesis shows how our models can be easily altered to solve
these challenges. Here are some of the challenges addressed in this thesis:

Adulterated Topics

It is a pressing issue in topic models that some of the topics identified may
contain words that does not belong to that topic. It would be an interest-
ing improvement if we are able to interactively provide input to the model
regarding the correctness of the learned topics [61]. However, integrating
interactive learning poses some challenges as well. It is important to keep in
mind that in the case of large datasets it would be impossible for the users to
check all the discovered topics. This calls for a proper mechanism to identify
which topics we need to show to the user on priority for modification. It is
also our primary desire to preserve the unsupervised topic extraction capa-
bility of our proposed models. These challenges are clearly addressed and
detailed in Chapter 4 of the thesis.

Structure of Text

Presence of words that co-occur together is a known property in texts. In
certain cases the effects of these bigrams can be ignored as they might not
hurt the efficiency of the model considerably. In certain data however, the
number of bigrams might be higher and might be important to consider.
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Chapter 5 of this thesis focuses on this problem by introducing a biterm
model which considers the presence of bigrams in the documents.

Model Selection

Experiments in Chapters 3, 4 and 5 show that, due to the introduction of
mixture model based design in our models, though it improves the topic
learning capabilities, we have to identify the optimal number of mixture
components. In general, it is a general norm in topic modelling approaches
to identify the number of topics for optimal representation. Pinning down
the number of components becomes an additional burden for our models.
Hence, in Chapter 6, we propose a DP based model which can take care of
the model selection problem.
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Chapter 3
Mixture Allocation Models

Over the years, extensive research has been conducted to learn patterns from
data. This helps in various decision making tasks in many industries such
as manufacturing, healthcare, etc. Recent developments in artificial neural
networks (ANN) based models have made them very useful for various tasks.
However, it is a well known fact that deep learning models are more like
a black box that work well for the task but lack interpretability which is
quintessential for tasks that need more reasoning [62]. On the other hand,
classic machine learning models like LDA, mixture models, etc. have good
interpretability even though they might achieve a slightly lower accuracy
when compared to deep learning models.

Owing to the proven efficiency of using GD and BL priors in topic models,
we introduce a topic model based on latent generalized Dirichlet allocation
(LGDA) [63] and latent Beta-Liouville allocation (LBLA) [47] combining it
with mixture models to enhance the support of respective topics giving rise
to latent generalized Dirichlet mixture allocation (LGDMA) and latent Beta-
Liouville mixture allocation (LBLMA) models, respectively.

In order to improve the modelling capabilities, we use variational infer-
ence method for estimating the parameters. Additionally, we also intro-
duce an online variational approach to cater to specific applications involv-
ing streaming data. We evaluate our models based on its performance on
applications related to text classification, image categorization and genome
sequence classification using a supervised approach where the labels are used
as an observed variable within the model [10]. This addition helps us to learn
topics pertaining to each class simultaneously for classification task rather
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than relying on external classifiers like Naive Bayes, support vector machine
(SVM), etc. which learns from the intermediate feature space derived from
the LGDMA or LBLMA model. There are a lot of applications which we
can use to evaluate our model in addition to text processing. In this chapter
we assess our models based on three applications from different fields of re-
search. We will have one application on image classification, one on genome
sequence classification and another on text classification.

The rest of the chapter is organized as follows: The model is described in
detail in section 3.1, and the parameters estimation by variational inference
method is explained in section 3.2. In section 3.3, we show how the inference
method has to be modified to incorporate online learning for streaming data.
The supervised LGDMA model is described in section 3.4. The experimental
results are discussed in section 3.5.

3.1 Model Description

The basic idea here is to create novel models where the single GD and BL
priors in LGDA and LBLA are replaced by mixtures of GD and BL distri-
butions respectively. We first explain latent generalized Dirichlet mixture
allocation (LGDMA) model in subsection 3.1.1. The latent Beta-Liouville
mixture allocation (LBLMA) model follows in 3.1.2 with brief modifications
avoiding redundancies.

3.1.1 Latent Generalized Dirichlet Mixture Allocation

The latent generalized Dirichlet mixture allocation model (LGDMA) follows
the same generative process as in LDA and other similar models with slight
variations [31]. We reiterate the variables and their roles once again as used
in the rest of the thesis. Let us consider a corpus of D documents, with each
document d represented as a word vector w⃗d = (wd1, wd2, ..., wdNd

). Here Nd

is the number of words in the document and each word can be represented
as a V dimensional one-hot encoded vector with wdnv = 1 where the word
wdn = v from the vocabulary V and 0 elsewhere. As in the previous cases,
we have a D dimensional topic assignment matrix Z⃗d = (z⃗d1, z⃗d2, ..., z⃗dNd

)
with z⃗dn being a K dimensional one-hot encoded vector with zdnk = 1 when
word zdn belongs to the topic k out of K topics. The probability that each of
these words belongs to a topic k is given by the multinomial with parameters
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β⃗k = (βk1, βk2, ..., βkV ) for each topic k among the K topics. As opposed
to a single GD distribution in the case of LGDA, in our case, we define the
topic proportions θ⃗d by a mixture of L GD distributions with parameters
σ⃗ = {σ⃗l} = {σlk} and τ⃗ = {τ⃗l} = {τlk}. We also have another indicator ma-
trix pertaining to the mixture model which is denoted by, Y = (y⃗1, y⃗2, ..., y⃗D)
where y⃗d is L dimensional with ydl = 1 when the document d belongs to clus-
ter l. Y is in turn governed by a multinomial distribution with parameters
π⃗ = (π1, π2, ..., πL) which is the mixing coefficient and follows the same con-
straints mentioned in subsection 2.4. With this setup, the generative process
in the case of LGDMA is as follows:

• For each word vector w⃗d in the corpus:

– Draw component l of the mixture yd = l ∽Multinomial(π⃗)

– Draw topic proportions θ⃗d | yd = l from a mixture of L generalized
Dirichlet distributions

– For each word n of the Nd words in document w⃗d

∗ Draw topic zdn = k ∽Multinomial(θ⃗d)

∗ Draw word wdn = v | zdn = k ∽Multinomial(β⃗zdn)

Based on these assumptions, we can write down the marginal likelihood of a
simple LGDMA model for a dataset W with D documents as:

p(W | π⃗, σ⃗, τ⃗ , β⃗) =
D
∏

d=1

∫

[

(

∑

yd

p(θ⃗d | yd, σ⃗, τ⃗)p(yd | π⃗)
)

×

Nd
∏

n=1

∑

zdn

p(wdn | zdn, β⃗)p(zdn | θ⃗d)

]

dθ⃗d (3.1)

From Eqs. 2.11 and 2.6, p(θ⃗d | y⃗d, σ⃗, τ⃗) will take the form of a mixture of gen-
eralized Dirichlet distribution with L components as shown in the following
equation:

p(θ⃗d | y⃗d, σ⃗, τ⃗) =
L
∏

l=1

K
∏

k=1

(

p(θdk | σlk, τlk)
)ydl

=
L
∏

l=1

[

K
∏

k=1

Γ(τlk + σlk)

Γ(τlk)Γ(σlk)
θσlk−1
dk

(

1−
k
∑

j=1

θdj

)γlk
]ydl

(3.2)
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The rest of the terms in Eq. 3.1 is given by multinomial distribution as
follows:

p(yd | π⃗) =
L
∏

l=1

π
ydl
l (3.3)

p(wdn | zdn, β⃗) =
K
∏

k=1

(

V
∏

v=1

βwdnv

kv

)zdnk

(3.4)

p(zdn | θ⃗d) =
K
∏

k=1

θzdnk

dk (3.5)

In order to improve the parameters estimation, statisticians usually use a
conjugate prior over the unknown parameters when it comes to Bayesian
statistics [64]. Following in those steps, we introduce Gamma prior to the
parameters σ⃗ and τ⃗ since the conjugate prior of GD is non-tractable while
estimating parameters with variational inference. So, the prior distributions
are now given by,

p(σlk) = G(σlk | υlk, νlk) =
νυlklk

Γ(υlk)
συlk−1
lk e−νlkσlk (3.6)

p(τlk) = G(τlk | slk, tlk) =
tslklk

Γ(slk)
τ slk−1
lk e−tlkτlk (3.7)

where, G(·) indicates Gamma distribution. [2] mentions a process called
smoothing which is used to eliminate the problem of sparsity. This is done
by assuming a Dirichlet prior over the parameter β⃗ as,

p(β⃗k | λ⃗k) =
Γ(
∑V

v=1 λkv)
∏V

v=1 Γ(λkv)

V
∏

v=1

βλkv−1
kv (3.8)

For the purpose of simplifying the inference, we assume a variational distri-
bution over θ⃗d given by the equation,

p(θ⃗d | g⃗d, h⃗d) =
K
∏

k=1

Γ(gdk + hdk)

Γ(gdk)Γ(hlk)
θ
gdk−1
dk

(

1−
k
∑

j=1

θdj

)ζdk

(3.9)

where, ζdk = hdk − gd(k−1) − hd(k−1) while k ≤ K − 1 and ζdk = hdk − 1 when
k = K. Figure 3.1 shows the graphical representation of the model obtained
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Figure 3.1: Graphical representation of LGDMA

based on these assumptions. Based on all the knowledge we have, we can
write the joint distribution of the posterior as,

p(W,Θ) =p(W | Z, β⃗, θ⃗, σ⃗, τ⃗ , y⃗) (3.10)

=p(W⃗ | Z, β⃗)p(z⃗ | θ⃗)p(θ⃗ | σ⃗, τ⃗ , y⃗)p(y⃗ | π⃗)p(θ⃗ | g⃗, h⃗)p(β⃗ | λ⃗)

× p(σ⃗ | υ⃗, ν⃗)p(τ⃗ | s⃗, t⃗) (3.11)

p(W,Θ) =
D
∏

d=1

Nd
∏

N=1

K
∏

k=1

(

V
∏

v=1

βwdnv

kv

)zdnk

×

D
∏

d=1

Nd
∏

N=1

K
∏

k=1

θzdnk

dk

×

D
∏

d=1

L
∏

l=1

[

K
∏

k=1

Γ(τlk + σlk)

Γ(τlk)Γ(σlk)
θσlk−1
dk

(

1−
k
∑

j=1

θdj

)γlk
]ydl

×
D
∏

d=1

L
∏

l=1

π
ydl
l ×

D
∏

d=1

K
∏

k=1

Γ(gdk + hdk)

Γ(gdk)Γ(hlk)
θ
gdk−1
dk

(

1−
k
∑

j=1

θdj

)ζdk

×

K
∏

k=1

V
∏

v=1

Γ(
∑V

v=1 λkv)
∏V

v=1 Γ(λkv)
βλkv−1
kv ×

L
∏

l=1

K
∏

k=1

νυlklk

Γ(υlk)
συlk−1
lk e−νlkσlk

×

L
∏

l=1

K
∏

k=1

tslklk

Γ(slk)
τ slk−1
lk e−tlkτlk (3.12)
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Given Θ = {Z, β⃗, θ⃗, σ⃗, τ⃗ , y⃗} which generally represents all the parameters in
the model.

3.1.2 Latent Beta-Liouville Mixture Allocation

The LBLMA model can be constructed from the same definitions considered
for LGDMA model. The only difference being the prior for the topic propor-
tions defined in Eq. 3.2 and its parameters. We replace the GD prior with
the BL prior changing the set of equations to,

p(θ⃗d | y⃗d, µ⃗, σ⃗, τ⃗) =
L
∏

l=1

K
∏

k=1

(

p(θdk | µlk, σl, τl)
)ydl

=
L
∏

l=1

K
∏

k=1

[

Γ(
∑K

k=1 µlk)
∏K

k=1 Γ(µlk)

Γ(σl + τl)

Γ(σl)Γ(τl)
θ
µlk−1
dk

×
[

K
∑

k=1

θdk

]σl−
∑

K

k=1 µlk
[

1−
K
∑

k=1

θdk

]τl−1
]ydl

(3.13)

This means θ⃗d is assumed to be a random vector following a Beta-Liouville
distribution with parameters (µl1, µl2, ..., µlK , σl, τl). Continuing with this
assumption, we can write the Gamma priors for the parameters as p(µlk) =
G(µlk | υlk, νlk); p(σl) = G(σl | sl, tl) and p(τl) = G(τl | Ωl,Λl) respectively
since they have the same properties as in the case of GD. Due to this changes
obviously, the variational distribution in Eq. 3.9 will be replaced by,

p(θ⃗d | f⃗d, gd, hd) =
K
∏

k=1

Γ(
∑K

k=1 fdk)
∏K

k=1 Γ(fdk)

Γ(gd + hd)

Γ(gd)Γ(hd)
θ
fdk−1
dk

×
[

K
∑

k=1

θdk

]gd−
∑

K

k=1 fdk
[

1−
K
∑

k=1

θdk

]hd−1

(3.14)
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With these changes, we can construct the joint distribution of the posterior
assuming a BL prior for the topic proportions as,

p(W,Θ) =
D
∏

d=1

Nd
∏

N=1

K
∏

k=1

(

V
∏

v=1

βwdnv

kv

)zdnk

×

D
∏

d=1

Nd
∏

N=1

K
∏

k=1

θzdnk

dk

×

D
∏

d=1

L
∏

l=1

[

K
∏

k=1

Γ(
∑K

k=1 µlk)
∏K

k=1 Γ(µlk)

Γ(σl + τl)

Γ(σl)Γ(τl)
θ
µlk−1
dk

×
[

K
∑

k=1

θdk

]σl−
∑

K

k=1 µlk
[

1−
K
∑

k=1

θdk

]τl−1
]ydl

×

D
∏

d=1

L
∏

l=1

π
ydl
l

×

D
∏

d=1

K
∏

k=1

Γ(
∑K

k=1 fdk)
∏K

k=1 Γ(fdk)

Γ(gd + hd)

Γ(gd)Γ(hd)
θ
fdk−1
dk

[

K
∑

k=1

θdk

]gd−
∑

K

k=1 fdk

×
[

1−
K
∑

k=1

θdk

]hd−1

×
K
∏

k=1

V
∏

v=1

Γ(
∑V

v=1 λkv)
∏V

v=1 Γ(λkv)
βλkv−1
kv

×

L
∏

l=1

K
∏

k=1

νυlklk

Γ(υlk)
µυlk−1
lk e−νlkµlk ×

L
∏

l=1

tsll
Γ(sl)

σsl−1
l e−tlσl

×

L
∏

l=1

ΛΩl

l

Γ(Ωl)
τΩl−1
l e−Λlτl (3.15)

Here Θ = {Z, β⃗, θ⃗, µ⃗, σ⃗, τ⃗ ,Y} indicates the set of parameters required for the
model. The graphical representation of the model is shown in Fig. 3.2.
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Figure 3.2: Graphical representation of LBLMA

3.2 Variational Inference

The parameter estimation method used in this work follows [64], which is
slightly different from [2] that is usually used for topic models based on
LDA. We choose variational inference instead of pure Bayesian methods like
Gibbs sampling [45] since these algorithms might take a very long time to
converge though they might give a better estimate of the parameters. The
variational approach establishes a distribution Q(Θ) which is assumed to
be an approximation of p(W | Θ) which is the posterior distribution we
desire to calculate. Hence the approach conquers the shortcomings of pure
Bayesian approaches by approximating the posterior rather than calculating
it. According to our approach we find the similarity between the posterior
and the variational distributions by using Kullback-Leibler (KL) divergence.
The KL divergence between two distributions is 0 when the two distributions
are similar. The KL divergence between Q(Θ) and p(W | Θ) is given by,

KL(Q || P ) = −

∫

Q
(

Θ
)

ln

(

p
(

W | Θ
)

Q
(

Θ
)

)

dΘ (3.16)

Simplifying this equation will lead to,

KL(Q || P ) = ln p(W )− L(Q) (3.17)
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where,

L(Q) =

∫

Q
(

Θ
)

ln

(

p
(

W,Θ
)

Q
(

Θ
)

)

dΘ (3.18)

By definition of these equations, maximizing the lower bound L(Q) results
in bringing down the KL divergence close to 0. Since the true posterior is
intractable, we introduce mean-field theory [65] considering the parameters
to be independent and identically distributed. Based on this idea, we can
write the distribution of variational parameters as a product of individual
parameters as Q(Θ) =

∏J

j=1 Θj provided J is the total number of parameters.
We find the optimal solution for each of the parameters by the following
equation,

Qj

(

Θj

)

=
exp

〈

ln p
(

W,Θ
)〉

̸=j
∫

exp
〈

ln p
(

W,Θ
)〉

̸=j
dΘ

(3.19)

According to this equation, we can see that, the optimal solution for pa-
rameter Θj is found by calculating the expectations with respect to all the
parameters other than Θj. Hence this process requires a suitable initializa-
tion during the start of the algorithm and then the variational solutions of
each parameter are updated continuously in each iteration. This maximizes
the lower bound and at convergence we find the optimal solution for all the
parameters of our model. The optimal variational solutions for our LGDMA
and LBLMA models are presented in the subsequent sections. A detailed
explanation of how to derive the solutions is explained in Appendix A.

3.2.1 Variational solutions for LGDMA

Calculating the variational solutions for Eq. 3.12 yields the following equa-
tions:

Q(Y) =
D
∏

d=1

L
∏

l=1

r
ydl
dl , Q(Z) =

D
∏

d=1

Nd
∏

N=1

K
∏

k=1

ϕzdnk

dnk (3.20)

Q(σ⃗) =
L
∏

l=1

K
∏

k=1

ν∗lk
υ∗

lk

Γ(υ∗lk)
σ
υ∗

lk
−1

lk e−ν∗
lk
σlk (3.21)

Q(τ⃗) =
L
∏

l=1

K
∏

k=1

t∗lk
s∗
lk

Γ(s∗lk)
τ
s∗
lk
−1

lk e−t∗
lk
τlk (3.22)
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Q(β⃗) =
K
∏

k=1

V
∏

v=1

Γ(
∑V

v=1 λ
∗
kv)

∏V

v=1 Γ(λ
∗
kv)

β
λ∗

kv
−1

kv (3.23)

Q(θ⃗) =
D
∏

d=1

K
∏

k=1

Γ(g∗dk + h∗dk)

Γ(g∗dk)Γ(h
∗
lk))

θ
g∗
dk

−1

dk

(

1−
k
∑

j=1

θdj

)ζ∗
dk

(3.24)

where,

rdl =
ρdl

∑L

l=1 ρdl
, ϕdnk =

δdnk
∑K

k=1 δdnk
, πl =

1

D

D
∑

d=1

rdl (3.25)

ρdl = exp

{

ln πl +Rl +
K
∑

k=1

(σlk − 1)
〈

ln θdk
〉

+ γlk

〈

1−
k
∑

j=1

θdj

〉

}

(3.26)

δdnk = exp(
〈

ln βkv
〉

+
〈

ln θdk
〉

) (3.27)

Here, R is the taylor series approximations of
〈

ln Γ(σ+τ)
Γ(σ)Γ(τ)

〉

and is given by,

R = ln
Γ(σ + τ)

Γ(σ)Γ(τ)
+ σ
[

Ψ(σ + τ)− Ψ(σ)
]

(
〈

ln σ
〉

− ln σ)

+ τ
[

Ψ(σ + τ)− Ψ(τ)
]

(
〈

ln τ
〉

− ln τ)

+ 0.5σ2
[

Ψ ′(σ + τ)− Ψ ′(σ)
]〈

(ln σ − ln σ)2
〉

+ 0.5τ 2
[

Ψ ′(σ + τ)− Ψ ′(τ)
]〈

(ln τ − ln τ)2
〉

+ σ τ Ψ ′(σ + τ)(
〈

ln σ
〉

− ln σ)(
〈

ln τ
〉

− ln τ) (3.28)

υ∗lk =υlk +
D
∑

d=1

〈

ydl
〉

[

Ψ
(

σlk + τ lk
)

− Ψ
(

σlk

)

+ τ lkΨ
′
(

σlk + τ lk
)(〈

ln τlk
〉

− ln τ lk
)

]

σlk (3.29)

s∗lk =slk +
D
∑

d=1

〈

ydl
〉

[

Ψ
(

τ lk + σlk

)

− Ψ
(

τ lk
)

+ σlkΨ
′
(

τ lk + σlk

)(〈

ln σlk
〉

− ln σlk

)

]

τ lk (3.30)
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ν∗lk = νlk −

D
∑

d=1

〈

ydl
〉〈

ln θdk
〉

(3.31)

t∗lk = tlk −
D
∑

d=1

〈

ydl
〉

〈

ln
[

1−
K
∑

j=1

θdj

]

〉

(3.32)

g∗dk = gdk +

Nd
∑

n=1

〈

zdnk
〉

+
L
∑

l=1

〈

ydl
〉

σlk (3.33)

h∗dk = hdk +
L
∑

l=1

〈

ydl
〉

τlk +
K
∑

kk=k+1

ϕdn(kk) (3.34)

λ∗kv = λkv +
D
∑

d=1

Nd
∑

n=1

V
∑

v=1

ϕdnkwdnv (3.35)

πl =
1

D

D
∑

d=1

rdl (3.36)

In the above equations,
〈

·
〉

indicates expectation of the variable and (·) is
the mean of the variable. The values of these expectations [66] and mean are
given by,

〈

ln θdk
〉

=
k
∑

j=1

(

Ψ(gdk)− Ψ(gdk + hdk)
)

(3.37)

〈

1−
k
∑

j=1

θdj

〉

=
k
∑

j=1

(

Ψ(hdk)− Ψ(gdk + hdk)
)

(3.38)

σlk =
υ∗lk
ν∗lk
,
〈

ln σlk
〉

= Ψ
(

υ∗lk
)

− ln ν∗lk (3.39)

〈(

ln σlk − ln σlk

)2〉
=
[

Ψ
(

υ∗lk
)

− ln υ∗lk
]2

+ Ψ ′
(

υ∗lk
)

(3.40)

τ lk =
s∗lk
t∗lk
,
〈

ln τlk
〉

= Ψ
(

s∗lk
)

− ln t∗lk (3.41)
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〈(

ln τlk − ln τ lk
)2〉

=
[

Ψ
(

s∗lk
)

− ln s∗lk
]2

+ Ψ ′
(

s∗lk
)

(3.42)

〈

zdnk
〉

= ϕdnk,
〈

ydl
〉

= rdl,
〈

ln βkv
〉

= Ψ(λkv)− Ψ(
V
∑

f=1

λkf ) (3.43)

Ψ(·) and Ψ(·)′ in the above equations indicate the digamma and trigamma
functions respectively. To find the optimal solution, our algorithm calculates
equations 3.20 - 3.24 iteratively until there is no considerable change in the
lower bound estimates.

3.2.2 Variational solutions for LBLMA

The variational solutions for Eq. 3.15 is more or less the same as in the
previous section, except that some definitions of variables are different in
addition to the obvious change in Q(θ⃗). The variational solutions are:

Q(Y) =
D
∏

d=1

L
∏

l=1

r
ydl
dl , Q(Z) =

D
∏

d=1

Nd
∏

N=1

K
∏

k=1

ϕzdnk

dnk (3.44)

Q(µ⃗) =
L
∏

l=1

K
∏

k=1

ν∗lk
υ∗

lk

Γ(υ∗lk)
µ
υ∗

lk
−1

lk e−ν∗
lk
µlk (3.45)

Q(σl) =
L
∏

l=1

t∗l
s∗
l

Γ(s∗l )
σ
s∗
l
−1

l e−t∗
l
σl (3.46)

Q(τl) =
L
∏

l=1

Λ∗
l
Ω∗

l

Γ(Ω∗
l )
τ
Ω∗

l
−1

l e−Λ∗

l
τl (3.47)

Q(β⃗) =
K
∏

k=1

V
∏

v=1

Γ(
∑V

v=1 λ
∗
kv)

∏V

v=1 Γ(λ
∗
kv)

β
λ∗

kv
−1

kv (3.48)

Q(θ⃗) =
D
∏

d=1

K
∏

k=1

Γ(
∑K

k=1 f
∗
dk)

Γ(f ∗
dk)

Γ(g∗d + h∗d)

Γ(g∗d)Γ(h
∗
d)
θ
f∗

dk
−1

dk

×
[

K
∑

k=1

θdk

]g∗
d
−
∑

K

k=1 f
∗

dk

[

1−
K
∑

k=1

θdk

]h∗

d
−1

(3.49)
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where,

rdl =
ρdl

∑L

l=1 ρdl
, ϕdnk =

δdnk
∑K

k=1 δdnk
, πl =

1

D

D
∑

d=1

rdl (3.50)

ρdl =exp

{

ln πl +Rl + Sl + (µlk − 1)
〈

ln θdk
〉

+
(

σl −

K
∑

k=1

µlk

)〈

ln
[

K
∑

k=1

θdk
]

〉

+ (τl − 1)
〈

ln
[

1−
K
∑

k=1

θdk

]〉

}

(3.51)

Due to intractability, we use taylor series expansions for
〈Γ(

∑
K

k=1 σlk)

Γ(σlk)

〉

and
〈

ln Γ(σ+τ)
Γ(σ)Γ(τ)

〉

denoted by R and S respectively. The approximations are given
as,

Rl = ln
Γ(
∑K

k=1 µlk)
∏K

k=1 Γ(µlk)
+

K
∑

k=1

µlk

[

Ψ
(

K
∑

k=1

µlk

)

− Ψ(µlk)
]

[〈

lnµlk

〉

− lnµlk

]

+
1

2

K
∑

k=1

µ2
lk

[

Ψ ′
(

K
∑

k=1

µlk

)

− Ψ ′(µlk)
]

−
〈

(lnµlk − lnµlk)
2
〉

+
1

2

K
∑

a=1

K
∑

b=1,a ̸=b

µlaµlb

[

Ψ ′
(

K
∑

k=1

µlk

)

(〈

lnµla

〉

− lnµla

)(〈

lnµlb

〉

− lnµlb

)

]

(3.52)

S = ln
Γ(σ + τ)

Γ(σ)Γ(τ)
+ σ
[

Ψ(σ + τ)− Ψ(σ)
]

(
〈

ln σ
〉

− ln σ)

+ τ
[

Ψ(σ + τ)− Ψ(τ)
]

(
〈

ln τ
〉

− ln τ)

+ 0.5σ2
[

Ψ ′(σ + τ)− Ψ ′(σ)
]〈

(ln σ − ln σ)2
〉

+ 0.5τ 2
[

Ψ ′(σ + τ)− Ψ ′(τ)
]〈

(ln τ − ln τ)2
〉

+ σ τ Ψ ′(σ + τ)(
〈

ln σ
〉

− ln σ)(
〈

ln τ
〉

− ln τ) (3.53)

υ∗lk =υlk +
D
∑

d=1

〈

ydl
〉

µlk

[

Ψ
(

K
∑

k=1

µlk

)

− Ψ(µlk)

+ Ψ
(

K
∑

k=1

)

K
∑

a ̸=k

(〈

lnµla

〉

− lnµla

)

µla

]

(3.54)
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ν∗lk = νlk −

D
∑

d=1

〈

ydl
〉

[

〈

ln θdk
〉

−
〈

ln
K
∑

k=1

θdk

〉]

(3.55)

s∗l =sl +
D
∑

d=1

〈

ydl
〉

[

Ψ
(

σl + τ l
)

− Ψ
(

σl

)

+ τ lΨ
′
(

σl + τ l
)(〈

ln τl
〉

− ln τ l
)

]

σl (3.56)

t∗l = tl −

D
∑

d=1

〈

ydl
〉

〈

ln
[

K
∑

k=1

θdk

]

〉

(3.57)

Ω∗
l =Ωlk +

D
∑

d=1

〈

ydl
〉

[

Ψ
(

τ l + σl

)

− Ψ
(

τ l
)

+ σlΨ
′
(

τ l + σl

)(〈

ln σl
〉

− ln σl

)

]

τ l (3.58)

Λ∗
l = Λl −

D
∑

d=1

〈

ydl
〉

〈

ln
[

1−
K
∑

k=1

θdk

]

〉

(3.59)

f ∗
dk = fdk +

Nd
∑

n=1

〈

zdnk
〉

+
L
∑

l=1

〈

ydl
〉

µlk (3.60)

g∗d = gd +

Nd
∑

n=1

K
∑

k=1

〈

zdnk
〉

+
L
∑

l=1

〈

ydl
〉

σl (3.61)

h∗d = hd +
L
∑

l=1

〈

ydl
〉

τl (3.62)
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The expectations in these equations are defined with respect to BL distribu-
tion as follows:

〈

ln θdk
〉

=Ψ(fdk)− Ψ
(

K
∑

k=1

fdk

)

+ Ψ(gd)− Ψ(gd + hd) (3.63)

〈

k
∑

k=1

θdk

〉

=
k
∑

k=1

(

Ψ(gd)− Ψ(gd + hd)
)

(3.64)

〈

1−
k
∑

k=1

θdk

〉

=
k
∑

k=1

(

Ψ(hd)− Ψ(gd + hd)
)

(3.65)

σlk =
υ∗lk
ν∗lk
,
〈

ln σlk
〉

= Ψ
(

υ∗lk
)

− ln ν∗lk (3.66)

〈(

ln σlk − ln σlk

)2〉
=
[

Ψ
(

υ∗lk
)

− ln υ∗lk
]2

+ Ψ ′
(

υ∗lk
)

(3.67)

σl =
s∗l
t∗l
,
〈

ln σl
〉

= Ψ
(

s∗l
)

− ln t∗l (3.68)

〈(

ln σl − ln σl

)2〉
=
[

Ψ
(

s∗l
)

− ln s∗l
]2

+ Ψ ′
(

s∗l
)

(3.69)

τ lk =
Ω∗

l

Λ∗
l

,
〈

ln τl
〉

= Ψ
(

Ω∗
l

)

− ln Λ∗
l (3.70)

〈(

ln τl − ln τ l
)2〉

=
[

Ψ
(

Ω∗
l

)

− ln Ω∗
l

]2
+ Ψ ′

(

Ω∗
l

)

(3.71)

〈

zdnk
〉

= ϕdnk,
〈

ydl
〉

= rdl,
〈

ln βkv
〉

= Ψ(λkv)− Ψ(
V
∑

f=1

λkf ) (3.72)

We follow the same algorithm for LBLMA calculating the equations 3.44 -
3.49 repeatedly until convergence.

3.3 Online Variational Inference

The variational algorithm introduced in the previous section of the chapter
gives faster convergence than pure Bayesian approach with Gibbs sampling
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in terms of batch data. However, we might encounter situations where the
data is huge and as a result requires processing them in mini batches due to
memory constraints or the data is constantly arriving in realtime. In these
cases we use online variational inference algorithm which is more equipped to
handle this type of data [67]. To modify the variational algorithm for online
learning let us consider a part of the complete set of D documents. Let p(W )
be the model evidence of this finite set of documents. The expectation value
of the model evidence is thus given by,

〈

ln p(W )
〉

=

∫

Φ(W ) ln

(

∫

p(W | Θ)p(Θ)d(Θ)

)

dW (3.73)

where, the unknown probability distribution of the data observed until now
is given by Φ(W ). Then expectation of the lower bound considering the

hyperparameter set Ω = {σ⃗, τ⃗ , β⃗, θ⃗} in case of GD or Ω = {σ⃗, σ, τ, β⃗, θ⃗} in
case of BL can then be modified as,

〈

L(Q)
〉

Φ
=

〈

∑

Z

∑

y

∫

Q(Ω)Q(Z)Q(y⃗) ln

[

p(W,Z, y⃗ | Ω)p(Ω)

Q(Ω)Q(Z)Q(y⃗)

]

dΩ

〉

Φ

=D

∫

Q(Ω)dΩ

〈

∑

Z

∑

y

Q(Z)Q(y⃗) ln

[

p(W,Z, y⃗ | Ω)

Q(Z)Q(y⃗)

]〉

Φ

+

∫

Q(Ω) ln

[

p(Ω)

Q(Ω)

]

dΩ (3.74)

If we take only a part of the data, let’s say x documents among D, then the
lower bound corresponding to this smaller set is given by,

Lx(Q) =
D

x

x
∑

i=1

∫

Q(Ω)dΩ
∑

Zi

∑

yi

Q(Z⃗i)Q(y⃗i) ln

[

p(Wi, Z⃗i, y⃗i | Ω)

Q(Z⃗i)Q(y⃗i)

]

+

∫

Q(Ω) ln

[

p(Ω)

Q(Ω)

]

dΩ (3.75)

We maximize the lower bound each time with the assumption that we have
observed x documents, which is a subset of the entire corpus. As the new
document w⃗x is streamed, we maximize the lower bound Lx(Q) with respect
to Q(z⃗x) and Q(y⃗x) using the variational solution of the parameters in the
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previous step Q(x−1)(Ω) followed by maximizing the lower bound with respect

to Q(x)(Ω) by keeping Q(y⃗x) and Q(Z⃗x) fixed. This stochastic approach
makes the algorithm a natural gradient method. The parameter updates for
LGDMA from the batch variational approximation changes to,

∆υ
∗(x)
lk =υ

∗(x)
lk − υ

∗(x−1)
lk

υ∗lk =υlk +D
〈

yxl
〉

[

Ψ
(

σlk + τ lk
)

− Ψ
(

σlk

)

+ τ lkΨ
′
(

σlk + τ lk
)(〈

ln τlk
〉

− ln τ lk
)

]

σlk − υ
∗(x−1)
lk (3.76)

∆s
∗(x)
lk =s

∗(x)
lk − s

∗(x−1)
lk

s∗lk =slk +D
〈

yxl
〉

[

Ψ
(

τ lk + σlk

)

− Ψ
(

τ lk
)

+ σlkΨ
′
(

τ lk + σlk

)(〈

ln σlk
〉

− ln σlk

)

]

τ lk − s
∗(x−1)
lk (3.77)

∆ν
∗(x)
lk =ν

∗(x)
lk − ν

∗(x−1)
lk

ν∗lk =νlk −D
〈

yxl
〉〈

ln θxk
〉

− ν
∗(x−1)
lk (3.78)

∆t
∗(x)
lk =t

∗(x)
lk − t

∗(x−1)
lk

t∗lk =tlk −D
〈

yxl
〉

〈

ln
[

1−
K
∑

j=1
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with the learning rate ϖx given by ϖx = (µ0+x)
−ε following the constraints

ε ∈ (0.5, 1] and µ0 ≥ 0 as mentioned in [9]. This helps reduce the effects of
estimation from past documents over time. These equations are calculated
every time new data arrives.

Similarly, we can also write the corresponding updates for LBLMA model
as,
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With these updates, we can achieve an efficient online learning for LBLMA.

3.4 Supervised models

The two algorithms mentioned before help in extracting topics from the data.
However, the topic learned is better evaluated when used in combination with
a classifier for a real world task. There are a lot of studies to use the learned
topics from LDA as a feature space which can be used as input to a classifier
like SVM, naive Bayes, etc [68]. In our paper, we use simultaneous learning
of topics corresponding to the classes as mentioned in [10]. Figs. 3.3 and 3.4
show the graphical representation of our supervised LGDMA (sLGDMA) and
supervised LBLMA (SLBLMA) model respectively. Let C be the number
of classes in the dataset indicated by the association vector c⃗ = {cd}. We
use a softmax function to define the class corresponding to a document w⃗d
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Figure 3.3: Graphical representation of supervised LGDMA

as mentioned in [69] given by,

p(cd | z⃗d, η⃗) = softmax(ηTa z⃗d) =
exp(ηTa z⃗d)

∑C

a=1 exp(η
T
a z⃗d)

(3.105)

where z⃗d = {zdk} and η⃗ = {η⃗a} = {ηak} represents the class label coeffi-
cients which is more like a weight vector for each of the topics pertaining
to the class. zdk = 1

Nd

∑Nd

n=1 δ(zdn, k) with δ(zdn, k) = 1 when zdn = k and
0 if not. The lower bound of the batch variational algorithms for both the
models remains the same except for the addition of the softmax function.
The softmax function impacts only the variable ϕdnk and hence the rest of
the variational solutions remain untouched. Furthermore, there is also an
addition of variational solution corresponding to the parameter η⃗. The new
estimation of δdnk which causes the changes in ϕdnk is given by,
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Given, h⃗ = {hk} and

h⃗T ϕ⃗old
dn =

C
∑

a=1

Nd
∏

n=1

(

K
∑

j=1

ϕdnj exp
(ηaj

Nd

)

)

(3.107)
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Figure 3.4: Graphical representation of supervised LBLMA

where ϕ⃗old
dn is the value of ϕdnk from the previous iteration. We also use the

estimation of η⃗ as in [69] given by,
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with,
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ϕ⃗dk =
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Nd
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ϕdnk (3.110)

Detailed derivations of these equations are explained in [69]. During the
training phase, either the batch variational algorithm or the online version
(depends on the application under consideration) can be used with the new
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solution for ϕdnk and η⃗ is calculated as an extra parameter in each iteration.
For predicting a new document wd, the variational estimations of a fitted
model can be used to calculate z⃗d with the normal variational algorithm. We
then calculate the value of softmax(ηTa z⃗d) for each class and the class with
the maximum value is chosen as the target label for the test document.

3.5 Experimental Results

The best way to evaluate topic models is to test its efficiency for classifica-
tion tasks. Though the use of topic models is mostly in the field of natural
language processing it has been widely deployed for multiple applications in
other fields. Image categorization for example is an interesting application
that has been surveyed extensively as well [69]. Genomic sequence classi-
fication is a field which is less explored with LDA. In our experiments, we
evaluate our model against three applications. To prove the robustness of
our model to extract topics in cases where the number of data samples are
less, we use minimal data for training in our applications. We compare our
model with other standard benchmark classifiers which uses topics learned
from an LDA model. We also analyze the performance of our model when the
number of topics and number of mixture components are changed. Section
3.5.1 shows how LGDMA model can be used to classify Genomic sequences
of bacteria belonging to different genera. In section 3.5.2, we see how the
model performs in categorizing images. Section 3.5.3 presents the results on
text classification both for batch processing and our online model.

Table 3.1: Accuracy of classification models on different applications

Model Genome(%) Image(%) Text(%)

LDA + SVC 84.28 82.5 94.2
LDA + KNN 82.85 75 93.8
LDA + RF 83.57 82.5 93.8
sLGDMA 86.43 80.83 95.6
sLBLMA 87.86 83.33 96.4
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3.5.1 Genomic Sequence Classification

Classifying a new genomic sequence which might be DNA or RNA into the
proper species requires comparing the sequence with around 9 million se-
quences. Classifying them into their taxonomic domain, phylum, class, or-
der, etc helps narrowing down the search area which speeds up the process.
Probabilistic topic models like LGDMA and LBLMA can be of help for this
task [70]. Any living organism can be identified by its DNA or RNA. RNA
consists of four nucleotides namely, adenine (A), guanine (G), cytosine (C)
and uracil (U). DNA on the other hand varies in the last component which
is thymine (T). The sequence of these compositions vary for each species and
hence can be identified uniquely.

For our experiments, we use the dataset provided in [71]. The data con-
sists of genomic sequences from 3 domains ’Bacteria’, ’Archaea’ and ’Eu-
karyota’. Since classifying between domains or even families is going to be a
pretty easy task, we choose 7 different genera from bacteria namely ’Kocuria’,
’Arthrobacter’, ’Micrococcus’, ’Pseudarthrobacter’, ’Rothia’ ’Glutamicibac-
ter’ and ’Paenarthrobacter’ from the family ’Micrococcaceae’ consisting of
120 genomic sequences each. Among them 100 is used for training and 20
for testing. In the preprocessing, considering a sequence of any length, we
extract k-mers and count the frequency of each k-mer in the sequence. This
gives a similar representation to the bag of words model. A k-mer is a string
of length k in a genomic sequence. For example, if k = 7 we extract all pos-
sible series of length 7 from the sequence. We use this count data as input
for our supervised LGDMA and LBLMA model.

Fig. 3.5 and 3.5 shows how changing the number of topics K and the
number of mixture components L affects the performance of our models. In
the case supervised LGDMA, we can see that maximum accuracy is achieved
when K = 25 whereas supervised LBLMA performs the best with lower
number of topics of just K = 15. Both models perform the best when the
number of components is set to L = 3. We also see that the sLBLMA
performs better than the sLGDMA model. However, generally both these
models perform much better than the other standard classifiers based on
support vector machine (SVM), K-nearest neigbors (KNN) and random forest
(RF) as shown in Fig. 3.1. The input for these classifiers will be the output
parameter of the topic proportions from LDA as described in [2]. It is a
notable fact that when L = 1 the model is technically LGDA and LBLA
models with no impact from the mixture components. This comparison shows
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Figure 3.5: Variations of accuracy over L and K for genome classification
supervised LGDMA

Figure 3.6: Variations of accuracy over L and K for genome classification
supervised LBLMA

the benefits of adding mixture components to the topic model.

3.5.2 Image Classification

Image classification is an important application in the field of pattern recog-
nition. Since image data can be represented as a bag of visual words, it is a
known fact that topic models such as sLGDMA and sLBLMA can be used
for learning from this data. There are a number of methods which we can use
to extract features from images before converting them into bags of visual
words. For example, histogram of oriented gradients (HOG) is a method
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which splits the image into cells and creates a histogram out of the gradi-
ent directions within the cell [72]. Scale invariant feature transform (SIFT)
is another method which identifies a set of interest points and records the
features corresponding to that point [73]. We then used these features to
create a bag of visual words model which can be used as input for image
classification.

Figure 3.7: Sample images from each of the class in GHIM dataset

In our experiments, we use the data from GHIM-10K dataset mentioned
in [74]. The dataset has 500 images in each of its 20 categories with size
400×300 or vice versa. For our experiments, we use 6 classes from the dataset
namely buildings, cars, flowers, planes, sail boats and chicken. Some sample
images from the dataset are shown in figure 3.7. We take 100 images from
each of this classes for training and 20 for testing. We extract SIFT feature
descriptors from these images and then use k-means algorithm to create a
bag of visual words model counting the frequency of similar features in the
dataset. This data is served as input for our sLGDMA and sLBLMA models.
Fig. 3.8 and 3.9 shows the result obtained for a test set of 20 images each. We
can see from table 3.1 that sLBLMA achieves the best performance. However,
sLGDMA performs comparatively less efficient compared to other models.
This experiment stands as an example to show why we need sLBLMA to
overcome the drawbacks of LGDMA. The best results for sLBLMA in this
experiment was achieved at K = 15 and L = 3. For sLGDMA the best
results where when K is set to 25 and L is 3. In our experiments, we also
found the pattern that as L increases, the accuracy increases up to a certain
point which is 3 in our case and then decreases. This is a similar effect usually
observed with the number of topics K.
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Figure 3.8: Variations of accuracy over L and K for Image classification with
supervised LGDMA

Figure 3.9: Variations of accuracy over L and K for Image classification with
supervised LBLMA

3.5.3 Text Classification

Text classification is primarily the basic application that topic models like
LGDMA were invented for and allows us to visualize the topics which are
understandable. For text classification, we use BBC news data1 belonging
to five categories which are business, entertainment, politics, sport and tech-
nology . The dataset consists of about 2225 documents with 610 documents
from business, 386 documents concerning entertainment, 417 documents from
politics, 511 documents from sports and 401 documents from technology re-

1http://mlg.ucd.ie/datasets/bbc.html
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lated documents. Among these documents 100 from each of the classes was
separated for testing and the rest were used for training. The preprocessing
step involved removal of stop words followed by removing small words less
than the length of 4. Both lemmatization and stemming steps was ignored as
they did not give good results. The frequency of the words in the tokenized
documents is recorded to form the bag of words representation. The data is
then fed into our sLGDMA and sLBLMA models for classification. We show
the topics learned by our model corresponding to LGDMA in Table 3.2 as
an example. Similar topics where recorded with LBLMA as well which is
avoided for brevity. This shows the interpretability of the model and all the
learned topics seems fairly relatable. Table 3.1 shows that both our models

Table 3.2: Accuracy of models on text data

Topic Words

Business ‘sales’,‘growth’,‘firm’,‘economic’,‘economy’,‘government’,
‘market’,‘company’

Entertainment ‘singer’,‘actor’,‘album’,‘star’,‘band’,‘award’,
‘awards’,‘music’

Politics ‘leader’,‘secretary’,‘prime’,‘said’,‘minister’,‘brown’,
‘party’,‘blair’

Sports ‘players’,‘team’,‘second’,‘play’,‘world’,‘game’,
‘time’,‘england’

Technology ‘video’,‘game’,‘phone’,‘digital’,‘software’,‘games’,
‘users’,‘music’

perform really well compared to other standard models. We can also see how
the variations in number of topics affects the results in Fig. 3.10 and 3.11.
sLGDMA seems to perform the best when K = 30 and L = 3. On the other
hand, the accuracy of sLBLMA is not impacted too much for K = 30 for L
from 2 to 4 though it is not the case for different values of K.

Being the largest dataset in our experiments, this application serves as an
excellent candidate to test our online models. We run the online versions of
LGDMA and LBLMA on this data with settings from the best performances
in batch experiments. The results are shown in Fig. 3.12 which presents
how the accuracy varies when the algorithm has seen every 100 documents.
We can see that sLGDMA takes more than 200 documents to properly fit
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Figure 3.10: Variations of accuracy over L and K for text classification su-
pervised LGDMA

Figure 3.11: Variations of accuracy over L and K for text classification su-
pervised LBLMA

Figure 3.12: Performance of online sLGDMA and sLBLMA
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the document whereas sLBLMA was able to get around 90% accuracy after
learning 200 documents. We do not achieve high results as in the batch
variational approach because the order in which the documents are learned
plays a pivotal role in the accuracy. The best accuracy achieved by sLGDMA
was 95.2% after seeing 1000 documents and 93.2% in the case of sLBLMA.
The average accuracy of sLGDMA is 82.8% and that of sLBLMA is 82.97%.
Though slightly higher we can see that sLGDA tends to be me more stable
over time. However, it is obvious that both models present their own set
of trade offs which dictates the choice of what model is to be used for a
particular application.
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Chapter 4
Interactive Learning

A lot of efforts have been put in recent times for research in the field of
natural language processing. One of the major tasks in natural language
processing is to categorize texts into different categories. Extracting topics
is undoubtedly one of the most important tasks in this area of research. This
helps in various tasks such as sentiment analysis [75], threat detection [76],
document categorization [77], etc. In the previous chapter we proposed the
use of LGDMA and LBLMA models for topic extraction which could help in
text categorization. However, there is a chance that the topics derived may
contain words which are irrelevant to that topic.

Improving the quality of topics extracted from these models is impor-
tant for accurate inference and unsupervised language tasks. Owing to this
cause, in this chapter, we propose interactive latent generalized Dirichlet Li-
ouville mixture allocation (iLGDMA) and interactive Beta-Liouville mixture
allocation (iLBLMA) models which combines the clustering capabilities with
interactive learning which helps the user to modify the topic weights of ir-
relevant words within the topic. The experiments were done separately for
iLGDMA and iLBLMA models on different datasets since the efficiency of
LGDMA and LBLMA have been already proven in the previous chapter.

Section 4.1 introduces our approach of interactive learning and explains
how the basic mixture allocation models can be easily adapted for interactive
learning. The experiments performed and the results obtained are discussed
separately for iLGDMA and iLBLMA in sections 4.2 and 4.3 respectively.
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4.1 Mixture Allocation Models with Interac-

tive Learning

Recollecting from the previous chapter, with variational smoothing the topic
word proportions is given by Eq. 3.8. For the sake of interactive learning,
the topic words parameter β⃗ is split into the objective variable β⃗o which
represents the probability generated by the iLGDMA or iLBLMA model and
β⃗u is the user defined subjective probabilities decided by a human expert. The
primal motive to incorporate an interactive learning algorithm is to enhance
topic quality, by asking the users to decide the probability of words within
the topic. Using the definitions of β⃗o and β⃗u mentioned earlier and adding
weights to this objective and subjective probabilities, β⃗ can be defined as.

β⃗ = η1β⃗o + η2β⃗u (4.1)

where, η1 and η2 are the weights given to the objective and subjective prob-
abilities respectively. The intention of using these values is to control the
effect of user input as it is probable that in some cases the user might not
be well versed in the topic under consideration. So assigning a lower value
to η2 in this case helps us to reduce the impact of user defined input. For
example, If the user has sufficient knowledge in the subject then η1 can be
for example 0.2 and η2 can be 0.8. If the user doesn’t have enough knowledge
in the subject the values can be vice versa. The only criteria to be taken
care of here is that η1 + η2 = 1. Apart from this change in the definition of
β⃗, all the definitions and solutions from the previous chapter holds and the
same variational procedure can be followed.

Another important question is to identify when to prompt users for input.
The criteria can be custom-defined based on our needs and the problem we
are trying to solve. For example, the criteria could be the number of iterations
or when the coherence score beyond a certain value or when the classification
accuracy with the topics is above a certain level. Nevertheless, the topics so
derived by the model might have some inconsistencies lowering the quality of
the topics. The main advantage of our models is going to be the interactive
learning part which helps us improve the quality of topics so formed. Let’s
say that our model gives usK topics at convergence. We calculate the UMass
coherence score at this point as explained in section 2.7.2.

Our new algorithm hence involves running the default variational infer-
ence to obtain the topics from the data and then assigning lower probabilities

49



to words which the user feels do not belong to that topic. At our convergence
criteria, we prompt the users to modify the probabilities of Tk words within
each topic. It would be better to show the topics with low coherence score
based on a threshold in case of large number of topics. If {pko1, p

k
o2, ..., p

k
oT}

are the probabilities inferred by our model and {pku1, p
k
u2, ..., p

k
uT ′} is the set

of probabilities of T ′
k words that the user choose to modify, then the new

probabilities for this set of words is obtained by βK
ut = pkot ∗ p

k
ut. The prob-

abilities that had been reduced is distributed among the rest of the words
proportionally by using the equation:

βk
ut = pot ∗

(

1 +
pr

∑

t pot

)

; ∀t ̸∈ T ′
k (4.2)

Here, pr =
∑T ′

k

t pkot ∗
(

1 − pkut
)

. The value of β⃗u can be substituted in Eq.
4.1. The variational algorithm is again carried out to attain the new set of
words in each topic. The graphical representation of the models after the
modification is shown in Fig. 4.1 and 4.2.

Figure 4.1: Graphical representation of iLGDMA
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Figure 4.2: Graphical representation of iLBLMA

4.2 Experimental Results for iLGDMA

To see how our model performs with real data, we use two real world datasets
namely, BBC news1 and twitter emotions [78]. The former consists of 2325
documents from 5 categories specifically business (610), entertainment (386),
politics (417), sports (511) and technology (401). On the other hand, the
later entails a huge corpus 416,809 tweets representing emotions related to
anger, joy, fear, love, sadness and surprise. To keep things simple we choose
2000 samples form each emotion category to test our model. The criteria
in our case will be, to pause when the accuracy of a supervised version of
LGDMA model following [10] attains a threshold accuracy which can be
varied. At this point the user will be prompted to enter new probabilities
for the words in each topic. After removing the stop words and words less
than four letters we create a bag of words model with 1800 and 1000 most
frequent words as the vocabulary. UMass score explained in section 2.7.2 is
used as a metric to record the performance of our model.

We compare our model with vanilla LGDMA, latent generalized Dirichlet
allocation (LGDA) and LDA models respectively. Our main comparison
is between iLGDMA and LGDMA since the interactive version is a direct
improvement over LGDMA. For both the experiments the value of L was
found to give better results when set to 3. The rest of the parameters are
randomly initiated. The coherence score of the two models when the value

1http://mlg.ucd.ie/datasets/bbc.html
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of K is set as 10, 15, 20 and 25 is shown in table 4.1 and table 4.2 for the
two datasets respectively. For both the cases, we see that iLGDMA achieves
a better coherence score than rest of the bunch.

Table 4.1: Average coherence score of all topics for BBC news data

Model K=10 K=15 K=20 K=25

iLGDMA -1.04 -1.16 -1.20 -1.56
LGDMA -1.20 -1.18 -1.36 -1.73
LGDA -1.30 -1.27 -1.38 -1.77
LDA -1.22 -1.40 -2.08 -1.87

Table 4.2: Average coherence score of all topics for emotions data

Model K=10 K=15 K=20 K=25

iLGDMA -4.65 -4.87 -4.67 -5.52
LGDMA -4.86 -4.99 -5.90 -6.30
LGDA -4.99 -5.09 -5.94 -7.48
LDA -5.13 -6.17 -6.30 -7.67

However, it would be more appropriate to compare what percentage of
increase in topic coherence our model provides compared to the rest, espe-
cially LGDMA. Figure 4.3 shows the percentage increase in coherence score
using our iLGDMA with the other models for BBC news data. The figure
also provides a fine comparison between the percentage increase achieved by
varying the weights of user defined probabilities. The experiments were con-
ducted with objective and subjective properties set to 0.2 and 0.8 to simulate
a well versed user and vice-versa in case of a user with low subject knowledge.
We can see a clear improvement when the user is someone who knows the
subject as opposed to a mundane user. This was replicated by lowering the
probability of a few correctly identified words in a topic in case of a common
user. The figure shows that even in this case we can still see considerable im-
provements over the other models. This shows the robustness of our model.
We can observe similar results in the case of tweets labelled with emotions.
Another notable observation from the two experiments is that, though the
weights were varied when the value of K was set to 10, the coherence score
remained the same. This is because, most of the words in the topics were
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Figure 4.3: % Increase in topic quality for BBC news

already closely related and little information from the user was more than
enough to improve the coherence to the best possible value. The figures also
show that our model outputs better topics almost with a percentage increase
of at least about 25% with respect to LDA for certain K values.

Figure 4.4: % Increase in topic quality for emotions dataset

4.3 Experimental Results for iLBLMA

We validate our model against the same BBC news data and 20 newsgroups2.
20 newsgroups data consists of about 20 different categories from various
domains such as computers, recreation, science, sales, politics and religion.
The preprocessing for both datasets involved removing the stop words and

2http://qwone.com/ jason/20Newsgroups/
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words less than four letters in length. For BBC news we used a vocabulary
of 1800 words and for 20 newsgroups, a vocabulary of about 5000 words
were used. The initialization for the model was done randomly. In our
experiments the best accuracy by using supervised iLGDMA is 96.4% and
75.69% for BBC and 20 newsgroups. Since topic quality is the prime concern
with our model we compare the UMass coherence score with vanilla latent
Beta-Liouville mixture allocation (LBLMA), latent Beta-Liouville allocation
(LBLA) and LDA. The experiments were performed by varying the value of
K from 10 to 25 in steps of 5. The best performance was achieved when the
number of mixtures components L in our model was set as 3. Tables 4.3 and
4.4 show the average coherence score for all the topics extracted following the
interactive algorithm compared to the other models. We can clearly see that
in both cases, iLBLMA increases the topic quality indicated by the coherence
score to a considerable extent. Especially in the case of LDA we see that the
change is quite evident.

Table 4.3: Average coherence score of all topics for BBC news data

Model K=10 K=15 K=20 K=25

iLBLMA -1.08 -1.09 -1.30 -1.36
LBLMA -1.17 -1.23 -1.40 -1.42
LBLA -1.12 -1.19 -1.39 -1.47
LDA -1.22 -1.40 -2.08 -1.87

Table 4.4: Average coherence score of all topics for 20 newsgroups data

Model K=10 K=15 K=20 K=25

iLBLMA -1.23 -1.35 -1.39 -1.50
LBLMA -1.62 -1.37 -1.44 -1.53
LBLA -1.42 -1.39 -1.58 -1.53
LDA -1.69 -2.63 -1.90 -2.22

In addition to comparing the coherence scores, it would be a better ex-
periment to check how the improvement in coherence score varies when the
weights for topic proportions are changed. Figure 4.5 shows how the change
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in weights impact the coherence score for BBC news data. We can see that
when the weights for user defined probabilities was set as 0.8, the coherence
increases much better. Even when the weights are 0.2, we can clearly see
a slight improvement in topic quality. Though this is an obvious change it
shows the flexibility of our model to serve the purpose even if the user does
not have much knowledge about the subject. Similarly, figure 4.6 shows the

Figure 4.5: % Increase in topic quality for BBC news

variations when the weights are changed for the 20 newsgroups dataset. For
this dataset, it was interesting to see that even though the coherence score
increased, varying the weights did not have much impact on the topic quality.
This is because even a slight bias to the topic probabilities by the user with
the weight of 0.2 causes the coherence to reach the best possible value and
did not require further modification. This effect is specific to this particular
dataset. This shows the sturdiness of our model to perform at a constant
level true to the LBLMA model when the user inputs do not have strong
evidence. Overall, in all the cases, we find that our iLBLMA model has
the capability to increase the quality of the topics extracted to a significant
level.
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Figure 4.6: % Increase in topic quality for 20 newsgroups
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Chapter 5
Biterm Learning for Recommendation

Systems

Content based recommender systems play a vital role in applications related
to user suggestions. In this chapter we explore ways to use our models to
tackle the recommendation task. Recommendation systems have become an
inseparable part of a variety of online services like web search, news articles,
movies, etc. in recent years [79]. Most of the recent advancement in this
field is centred on collaborative filtering [80] and content based filtering [79].
While the former method is based on modelling the activities of users with
similar behaviour in a platform, the later works on modelling the likes of
an individual user in the platform. Both approaches have their own merits
and are used depending on the task at hand. LDA has also been used for
creating recommendation systems [81, 82]. LDA can extract topics from the
description of user activity which could help suggest new items that the user
might be interested in.

It is well known that models which take into account, the co-occurrences
of words, tend to give a boost for topic modelling tasks [65]. This made us to
choose a design which incorporates the possibility of bigram words such as
‘Thank you’, ‘high school’, etc. This is relevant in our cases where most of our
data uses short text descriptions. We will integrate this idea into our models
to improve recommendations. We evaluate our model, with two challenging
datasets. One of them is for anime recommendation and the other is for
recommendation of movies from netflix. We estimate the performance of the
model based on coherence score for both datasets. In addition, since we had
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enough ground truth data to validate the netflix dataset, we estimate the
accuracy of predictions as well.

The modifications required to convert our basic models is explained in
Section 5.1. The experiments performed on the datasets with our models are
detailed in Section 5.2.

5.1 Biterm Models

Contrary to bigrams where the probability of two words occurring together is
considered, we take into account that logically these bigrams end up belong-
ing to the same topic and consider them as bi-terms associated with the same
topic as shown in Figure 5.1 and 5.2 resulting in biterm latent generalized
Dirichlet mixture allocation (Bi-LGDMA) and biterm latent Beta-Liouville
mixture allocation (Bi-LBLMA). This changes the equation for the topic
word probability into,

p(wd(n−1), wdn | zdn, β⃗) =
K
∏

k=1

(

V
∏

v=1

β
wd(n−1)(v−1)+wdnv

kv

)zdnk

(5.1)

wd(n−1) = vn−1 and wdn = vn in the above equation incorporates the depen-
dency of adjacent words to the topic latent variable.

Figure 5.1: Graphical representation of Bi-LGDMA

The rest of the equations for both LGDMA and LBLMA remains the
same and hence the variational solutions. Pertaining to these changes, the
variational solutions of the hyper parameters δdnk and λkv is given by,
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Figure 5.2: Graphical representation of Bi-LBLMA

δdnk = exp
(

[

wd(n−1)(v−1) + wdnv

] 〈

ln βkv
〉

+
〈

ln θdk
〉

)

(5.2)

λ∗kv = λkv +
D
∑

d=1

Nd
∑

n=1

V
∑

v=1

ϕdnk

[

wd(n−1)v + wdnv

]

(5.3)

5.2 Experimental results

To evaluate the performance of our model, we build a system for anime
recommendation based on a dataset in Kaggle containing information about
anime1 and another for recommending movies based on data from netflix
prize data 2. We compare our model with widely used LDA and examine
how our models weigh up against unmodified latent generalized Dirichlet
allocation (LGDA) and latent Beta-Liouville allocation (LBLA) models. The
idea of our recommendation system is that we find the Euclidean distance
between the document topic proportions ϕdk of the query document and the
rest of the documents. We can then find the top N recommendations for that
query. The following subsections detail our experiments for the two datasets.

1https://www.kaggle.com/datasets/marlesson/myanimelist-dataset-animes-profiles-
reviews

2https://www.kaggle.com/datasets/netflix-inc/netflix-prize-data
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5.2.1 Anime Recommendation

This dataset consisted of 2 files containing information about anime, reviews
of users and user profile details. The anime file had around 16K anime de-
tails like, title, synopsis, genre, airing date, etc. The profiles file had details
of users and the anime they have added as favourites. The reviews file has
information on the reviews the user has written for different anime. All these
data has been extracted from https://myanimelist.net. From the anime de-
tails file, the data that helps for content based recommendation is mainly
the synopsis. However, the synopsis was not available for some of the anime
within the data. Hence we used the myanimelist API to extract missing syn-
opsis. There were cases in which some of the titles refer to a parent anime and
the description of parent anime was taken in these cases. We ignore anime
where the synopsis is too short. After applying these constraints we were
left with around 1126 anime to use for our content based recommendation
system.

In the case of this dataset, there were a very few user profiles who had
more than 20 anime in their favourites list which was not enough to evaluate
our models. To understand the relevance of the topics that have been ex-
tracted by our model, we calculated UMass coherence score [60] explained in
2.7.2. Table 5.1 shows the coherence scores of topics derived from LDA, la-
tent generalized Dirichlet allocation (LGDA), latent Beta-Liouville allocation
(LBLA) and Bi-LGDMA and Bi-LBLMA for different values of L.

It can be seen that using a GD and BL prior helps in obtaining better
topics with a higher coherence score. Bi-LBLMA performs better that Bi-
LGDMA according to our experiments, which is due to the fact that choosing
the parameters for Bi-LGDMA is a little harder than Bi-LBLMA. We calcu-
lated the coherence scores for different values of K to find the correct number
of topics for the model. The best results were observed when K was set to 5.
Figure 5.3 shows this much more clearly. Both Bi-LGDMA and Bi-LBLMA
performed well when L = 3. In the case of Bi-LBLMA we see that the co-
herence is very close when L = 3 and L = 4. In these situations choosing
the L as 3 or 4 will give similar recommendations.

This being a quantitative assessment of the model, to qualitatively see
how the model performs, Table 5.2 shows few of the top ten suggestions for
a query anime for the two models. ’Bleach’ is an anime based on travelling
between worlds through portals in the action genre. The anime suggested by
Bi-LGDMA aligns with this concept of inter-dimensional portals and magic.
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Table 5.1: Average coherence score of topics for Anime Data

Model K=5 K=10 K=15 K=20 K=25

LDA -1.67 -1.92 -2.13 -2.54 -2.86
LGDA -1.48 -1.75 -1.95 -2.29 -2.56
Bi-LGDMA (L=2) -1.37 -1.62 -1.83 -2.12 -2.21
Bi-LGDMA (L=3) -1.32 -1.59 -1.79 -1.96 -2.08
Bi-LGDMA (L=4) -1.36 -1.61 -1.85 -1.99 -2.10
Bi-LGDMA (L=5) -1.35 -1.64 -1.85 -2.09 -2.17
LBLA -1.42 -1.71 -2.07 -2.22 -2.25
Bi-LBLMA (L=2) -1.35 -1.61 -1.81 -2.04 -2.11
Bi-LBLMA (L=3) -1.28 -1.58 -1.76 -1.88 -2.10
Bi-LBLMA (L=4) -1.28 -1.58 -1.80 -1.93 -2.09
Bi-LBLMA (L=2) -1.31 -1.65 -1.79 -1.99 -2.11

Table 5.2: Query results for Anime data

S. No. Bleach (Bi-LGDMA) Dragon Ball (Bi-LBLMA)

1 Fullmetal Alchemist Dragon Ball Z
2 Rosario to Vampire Dragon Ball Super Movie: Broly
3 World Trigger Boku no Hero Academia
4 FLCL Yu-Gi-Oh Duel Monsters
5 Tenjou Tenge Fate/stay night

Similarly, the test query for Bi-LBLMA was an anime called ’Dragon Ball’
which involves super-human fighting. It is interesting to see that our model
identified the sequel to the original anime followed by a few other anime like
‘Boku no Hero Academia’ which also falls under the same category.

5.2.2 Netflix movie recommendation

The Netflix dataset is bigger compared to the anime datset. The dataset
consists of details pertaining to ratings fo different users for around 17000
movies released before the year 2006. However, the problem with this dataset
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Figure 5.3: Coherence score for anime dataset for different values of K and
L

is that the synopsis of movies were not available. Hence, we scraped the data
from wikipedia pages to get this details and then used it for content based
recommendation. We selected the movies released after 2000 so that we
are aware of them to test qualitatively. This gave us around 4000 movies
with description. From the user details, we consider that a user likes a
movie when they rate it as 4 or 5. We selected users who had liked at least
300 movies. This left us with 900 users as ground truth. These conditions
are only to quantitatively access our models and can be ignored in realtime
applications. When queried with a movie that an user likes, if one of the top
N recommendations by our model is present in the list of movies liked by
that user, then we consider it as a hit. By using this logic, we can calculate
the accuracy of our model by calculating the ratio of total number of hits to
total number of queries.

We also calculate the coherence score of our topics as in the previous
subsection which is shown in Table 5.3. We can see that both our models
perform the best when L = 2 and K = 5. This is also seen in Figure 5.4. The
performance improvement achieved by our models compared to the widely
used LDA model proves the efficiency of our model to represent the topics
better.
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Table 5.3: Average coherence score of topics for Netflix Data

Model K=5 K=10 K=15 K=20 K=25

LDA -1.67 -1.92 -2.13 -2.54 -2.86
LGDA -1.48 -1.75 -1.95 -2.29 -2.56
Bi-LGDMA (L=2) -1.37 -1.62 -1.83 -2.12 -2.21
Bi-LGDMA (L=3) -1.32 -1.59 -1.79 -1.96 -2.08
Bi-LGDMA (L=4) -1.36 -1.61 -1.85 -1.99 -2.10
Bi-LGDMA (L=5) -1.35 -1.64 -1.85 -2.09 -2.17
LBLA -1.42 -1.71 -2.07 -2.22 -2.25
Bi-LBLMA (L=2) -1.35 -1.61 -1.81 -2.04 -2.11
Bi-LBLMA (L=3) -1.28 -1.58 -1.76 -1.88 -2.10
Bi-LBLMA (L=4) -1.28 -1.58 -1.80 -1.93 -2.09
Bi-LBLMA (L=2) -1.31 -1.65 -1.79 -1.99 -2.11

In addition to these analysis Table 5.4 shows the accuracy of different
models. Though both Bi-LGDMA and Bi-LBLA give comparatively better
accuracy for our model, the improvement for Bi-LGDMA is not that much
when compared to Bi-LBLA. Similar to the last experiment, we also check

Table 5.4: Accuracy of recommendation at N = 15 for Netflix Data

Model Accuracy

LDA 85.59
LGDA 84.40
Bi-LGDMA 86.00
LBLA 86.50
Bi-LBLMA 87.36

the quality of recommendations for two sample queries. This is shown in
Table 5.5. We can see that Bi-LGDMA recommends a set of teenage and
kids action movies like ’Agent Cody Banks’ when queried with the movie
‘THe Pacifier’ which is a kids action comedy. In the case of Bi-LGDMA
‘Resident Evil’ is a zombie movie where the virus causes the people to attack
the non-infected people. The recommendations from our model found similar
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Figure 5.4: Coherence score for anime dataset for different values of K and
L

plot lines like ‘Dawn of the dead’, ‘Sasquatch’, etc which are movies based
on virus outbreak, hunted by animals and so on.

Table 5.5: Query results for Netflix data

S. No. The Pacifier (Bi-LGDMA) Resident Evil (Bi-LBLMA)

1 Agent Cody Banks Dawn of the Dead
2 Agent Cody Banks 2: Destination London Sasquatch
3 Lilo and Stitch 2 Wrong Turn
4 101 Dalmations II: Patch’s London Adventure Evil Remains
5 Mean Creek Dead Birds
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Chapter 6
Nonparametric Approach for

Multilingual Data

In this chapter, we extend finite mixture model to infinite case to provide
flexibility in modelling various topics to define proper number of clusters au-
tomatically [83]. It is notable that in the previous chapters we experimented
with different values of L to find the optimal number of components [84].
Here we provide a solution to avoid this problem.

In the broad field of topic modelling, one of the main assumptions that
could not be generalized is that the language of resources is English. Lots
of models that have been conventionally used were designed to model mono-
lingual contexts only and work with monolingual resources [2]. Considering
the ongoing increase in technology specially in using online resources (for
instance social media which connect various parts of the world together),
more content from other languages besides English are becoming available.
However, translating these valuable documents to English and using them in
NLP algorithms that just work with one language is a great challenge and it
is so costly and needs lots of time. Thus, there is a growing interest in finding
solutions which could help scientists and industries to work with language-
independent text mining tools without needing any translation resources.

To tackle this issue, multilingual NLP has been introduced and helped sci-
entists to extract information regarding topics from various data sources and
documents [85,86]. In this method, various languages are tied together which
helps in discovering the connections in the languages of interest and building
coherent topics across them. This helps us in indexing similar topics across
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multiple languages which helps in multilingual document retrieval [87–91].
Also, we don’t have any linguistic assumption about documents or data that
we intend to model. This capability empowers our model to relax the con-
straint of modelling just one language and identifies similar patterns across
multiple corpora in various languages. Such models with their power of in-
ference on documents could be interesting in many applications [92–95].

We assume that our model has a nonparametric structure [96] which pro-
vides us considerable flexibility to model several topics in multiple languages.
To do so, we use Dirichlet process (DP) [97, 98] and extend our finite mix-
ture model to infinite case. This elegant method helps to address another
task which is defining model complexity. Conventionally, some criteria such
as Akaike information criterion [99], Bayes information criterion [100], mini-
mum description length and minimum message length [34] have been applied
to define proper number of clusters. But these methods are time consum-
ing as we need to check them for various numbers of clusters. We evaluate
the performance of our model with a real world dataset with two languages,
English and French. We measure the quality of topics by comparing the
coherence scores of the different models. We measure the similarity between
topics in different languages with Jaccard index. Our experimental outcomes
demonstrate the practicality of our proposed model in finding topics by pro-
cessing multi-lingual documents. Though the equations and definitions might
look repetitive, the presence of multiple languages causes slight differences
in most of the equations. Hence we redefine all the equations in this chapter
to avoid confusions.

In section 6.1, we explain in detail how to construct Dirichlet process
based LGDA (DP-LGDA) and Dirichlet process base LBLA (DP-LBLA)
models respectively. In section 6.2, we explain the learning method by
proposing a variational framework. This is followed by Section 6.3 which
is devoted to experimental results.

6.1 Model Description

In this section, we define the mathematical model for multilingual topic ex-
traction with Dirichlet process mixture allocation with generalized Dirichlet
and Beta-Liouville priors. First, we provide a general description of a topic
model and then define the required forms for DP-LGDA and DP-LBLA.

Let us consider a set of D documents in M different languages, where,
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d = {1, 2, ..., D} and m = {1, 2, ...,M} represent the dth document and mth

language respectively. Each document d in language m can be represented
as a word vector w⃗md =

(

wmd1, wmd2, ..., wmdNmd

)

, where, Nmd is the number
of words in that particular document. The nth word in a document can be
represented by an indicator vector which is Vm dimensional, corresponding
to the vocabulary size of language m following the rule, wmdnv = 1 when the
word wmdn is the same as the word vm in the the vocabulary and 0 otherwise.
Similarly, we also define a latent indicator variable Zm = {z⃗md} = {z⃗mdn}
showing which of the K topics the word belongs to based on the criteria
zmdnk = 1 if word wmdn is present in topic k and 0 if not. Each language
has a separate variable β⃗mk which describes the distribution of words in each
topic, given by, β⃗mk = (βmk1, βmk2, ..., βmkVm

). To define the prior for the

topic distribution for each document in a general manner, let’s say p(θ⃗ | Φ)
is the prior given the parameter of that distribution Φ. In the case of LDA
this distribution is Dirichlet. It is to be noted that in our case the topic
probabilities are drawn from an infinite mixture model. Y = (y⃗1, y⃗2, ..., y⃗D)
is the indicator matrix which stipulates which cluster the document belongs
to, where y⃗d is L dimensional with ydl = 1 when the document d belongs
to cluster l. Here L is the truncation level set for the Dirichlet process
mixture. Y is a multinomial distribution with parameters π⃗ = (π1, π2, ..., πL)
corresponding to the mixing coefficient and follows the constraint

∑L

l=1 πl =
1. The mixing coefficients here will follow a stick breaking approach to
construct a DP model. The main idea here is to define a common set of
topic proportion vectors θ⃗ which is shared by all the languages. This restricts
the topic proportion vectors that each document can take and forces the
topic word proportions across multiple languages to have a similar structure.
Doing this helps us to extract parallel topics across languages. The generative
process for our multilingual model can be written as follows:

• For each language corpus m in the dataset:

– For each word vector w⃗md in that corpus:

∗ Draw component l from the mixture yd = l ∽ DirichletProcess(π⃗)

∗ Draw topic proportions θ⃗d | yd = l from a mixture of L distri-
butions

∗ For each word n of the Nd words in document w⃗md

· Draw topic zmdn = k ∽Multinomial(θ⃗d)
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· Draw word wmdn = vm | zmdn = k ∽Multinomial(β⃗zmdn
)

The marginal likelihood of this multilingual topic model can thus be written
as,

p(W | π⃗, Φ⃗, β⃗) =
M
∏

m=1

D
∏

d=1

∫

[

(

∑

yd

p(θ⃗d | yd, Φ⃗)p(yd | π⃗)
)

×

Nd
∏

n=1

∑

zmdn

p(wmdn | zmdn, β⃗m)p(zmdn | θ⃗d)

]

dθ⃗d (6.1)

for a multilingual corpus W .

6.1.1 Dirichlet process based latent generalized Dirich-

let allocation

As explained earlier, using a generalized Dirichlet prior helps overcome the
drawbacks of Dirichlet distribution by providing a general covariance matrix
[30]. When we use a generalized Dirichlet prior for the topic proportions θ⃗d,
the distribution for each topic k takes the form,

p(θdk | σlk, τlk) =
Γ(τlk + σlk)

Γ(τlk)Γ(σlk))
θσlk−1
dk

(

1−
k
∑

j=1

θdj

)γlk

(6.2)

where (σl1, σl2, ..., σlNd
, τl1, τl2, ..., τlNd

) are the parameters of GD distribution
and γk = τk − τk+1 − σk+1 for k = 1, 2, ..., K − 1 and γk = σk − 1 for
k = K. Since considering mixture of distributions help us to improve the
topic model [101], we consider a mixture of GD distributions as prior for our
model. Thus we can write the prior for our topic proportions as,

p(θ⃗d | y⃗d, σ⃗, τ⃗) =
∞
∏

l=1

K
∏

k=1

(

p(θdk | σlk, τlk)
)ydl

(6.3)

Since, y⃗d is a multinomial with parameter π, we can write p(y⃗d) as,

p(y⃗d) =
∞
∏

l=1

π
ydl
l (6.4)
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By using a stick-breaking reconstruction of DP, replacing πj as a function of
κj, the equation becomes,

p(Y | κ⃗) =
D
∏

d=1

∞
∏

l=1

[

κl

l−1
∏

o=1

(1− κo)

]ydl

(6.5)

The first part of Eq. 6.1 can hence be written as,

p(θ⃗d | y⃗d, σ⃗, τ⃗)p(y⃗d | π⃗)
)

=
∞
∏

l=1

K
∏

k=1

[

(

κl

l−1
∏

o=1

(1− κo)
)(

p(θdk | σlk, τlk)
)

]ydl

(6.6)

p(wmdn | zmdnβ⃗m) and p(zmdn | θ⃗d) are multinomials given by,

p(wmdn | zmdn, β⃗m) =
K
∏

k=1

(

V
∏

v=1

βwmdnv

mkv

)zmdnk

(6.7)

p(zmdn | θ⃗d) =
K
∏

k=1

θzmdnk

dk (6.8)

We use Gamma priors which has proven to be an adequate alternative [29].
Hence the priors for the parameters of GD is given by,

p(σlk) = G(σlk | υlk, νlk) =
νυlklk

Γ(υlk)
συlk−1
lk e−νlkσlk (6.9)

p(τlk) = G(τlk | slk, tlk) =
tslklk

Γ(slk)
τ slk−1
lk e−tlkτlk (6.10)

where G(·) represents a Gamma distribution. The topic word proportions β⃗m
with Dirichlet prior is given by,

p(β⃗mk | λ⃗mk) =
Γ(
∑Vm

v=1 λmkv)
∏Vm

v=1 Γ(λmkv)

Vm
∏

v=1

βλmkv−1
mkv (6.11)

Assuming a variational prior for θ⃗d helps us to simplify the inference process.
Hence we define the equation,

p(θ⃗d | g⃗d, h⃗d) =
K
∏

k=1

Γ(gdk + hdk)

Γ(gdk)Γ(hlk)
θ
gdk−1
dk

(

1−
k
∑

j=1

θdj

)ζdk

(6.12)
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where, ζdk = hdk − gd(k−1) − hd(k−1) while k ≤ K − 1 and ζdk = hdk − 1
when k = K. Similarly, we also place a Beta distribution to define κ⃗ with
hyperparameters ω⃗ which gives,

p(κ⃗ | ω⃗) =
∞
∏

l=1

Beta(1, ωl) =
∞
∏

l=1

ωl(1− κl)
ωl−1 (6.13)

Following the approach used in [102], we introduce Gamma priors to the stick
lengths as,

p(ω⃗) = G(ω⃗ | a⃗, b⃗) =
∞
∏

l=1

ball
Γ(al)

ωal−1
j e−blωl (6.14)

Based on these equations, we can write the joint distribution of the posterior
as,

p(W,Θ) =p(W | Z, β⃗, θ⃗, σ⃗, τ⃗ ,Y)

=p(W⃗ | Z, β⃗)p(z⃗ | θ⃗)p(θ⃗ | σ⃗, τ⃗ ,Y)p(Y | κ⃗)p(κ⃗ | ω⃗)p(ω⃗)

p(θ⃗ | g⃗, h⃗)p(β⃗ | λ⃗)p(σ⃗ | υ⃗, ν⃗)p(τ⃗ | s⃗, t⃗) (6.15)

Given Θ = {Z, β⃗, θ⃗, σ⃗, τ⃗ ,Y} which represents all the parameters in our model.
We can represent our model as a plate diagram shown in Fig. 6.1.

Figure 6.1: Plate model of DP-LGDA
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6.1.2 Dirichlet process based latent Beta-Liouville mix-

ture allocation

We can construct the DP-LBLA with the same definitions considered for
DP-LGDA just by replacing the GD prior used in Eq. 6.2 with the BL
distribution. The prior in this case can be written as,

p(θ⃗d | y⃗d, µ⃗, σ⃗, τ⃗) =
L
∏

l=1

K
∏

k=1

[

Γ(
∑K

k=1 µlk)
∏K

k=1 Γ(µlk)

Γ(σl + τl)

Γ(σl)Γ(τl)
θ
µlk−1
dk

×
[

K
∑

k=1

θdk

]σl−
∑

K

k=1 µlk
[

1−
K
∑

k=1

θdk

]τl−1

(6.16)

where (µl1, µl2, ..., µlNd
, σl, τl) are the parameters of Beta-Liouville distribu-

tion. The Gamma priors for DP-LBLA can be similarly written as,

p(µlk) = G(µlk | υlk, νlk) =
νυlklk

Γ(υlk)
µυlk−1
lk e−νlkµlk (6.17)

p(σl) = G(σl | sl, tl) =
tsll

Γ(sl)
σsl−1
l e−tlσl (6.18)

p(τl) = G(σl | Ωl,Λl) =
ΛΩl

l

Γ(Ωl)
τΩl−1
l e−Λlτl (6.19)

Changing the prior to BL distribution also changes the variational prior in
Eq. 6.12 to,

p(θ⃗d | f⃗d, gd, hd) =
K
∏

k=1

Γ(
∑K

k=1 fdk)
∏K

k=1 Γ(fdk)

Γ(gd + hd)

Γ(gd)Γ(hd)
θ
fdk−1
dk

×
[

K
∑

k=1

θdk

]gd−
∑

K

k=1 fdk
[

1−
K
∑

k=1

θdk

]hd−1

(6.20)

Reflecting these changes, the joint likelihood can now be written with respect
to the parameters Θ as,

p(W,Θ) =p(W | Z, β⃗, θ⃗, µ⃗, σ⃗, τ⃗ ,Y) (6.21)

=p(W⃗ | Z, β⃗)p(z⃗ | θ⃗)p(θ⃗ | µ⃗, σ⃗, τ⃗ ,Y)p(Y | κ⃗)p(κ⃗ | ω⃗)p(ω⃗)

p(θ⃗ | f⃗ , g⃗, h⃗)p(β⃗ | λ⃗)p(µ⃗ | υ⃗, ν⃗)p(σ⃗ | s⃗, t⃗)p(τ⃗ | Ω⃗, Λ⃗) (6.22)

The plate model of DP-LBLA is shown in Fig. 6.2
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Figure 6.2: Plate model of DP-LBLA

6.2 Variational Solutions

Calculating the variational solutions as described earlier in section 3.2 for
Eq. 6.15 results in the following equations:

Q(Y) =
D
∏

d=1

L
∏

l=1

r
ydl
dl , Q(Z) =

D
∏

d=1

Nd
∏

N=1

K
∏

k=1

ϕzmdnk

mdnk , Q(κ⃗) =
L
∏

l=1

Beta
(

κl | c
∗
l , d

∗
l

)

(6.23)

Q(σ⃗) =
L
∏

l=1

K
∏

k=1

ν∗lk
υ∗

lk

Γ(υ∗lk)
σ
υ∗

lk
−1

lk e−ν∗
lk
σlk , Q(τ⃗) =

L
∏

l=1

K
∏

k=1

t∗lk
s∗
lk

Γ(s∗lk)
τ
s∗
lk
−1

lk e−t∗
lk
τlk

(6.24)

Q(β⃗) =
K
∏

k=1

Vm
∏

v=1

Γ(
∑Vm

v=1 λ
∗
kv)

∏Vm

v=1 Γ(λ
∗
kv)

β
λ∗

kv
−1

kv (6.25)

Q(θ⃗) =
D
∏

d=1

K
∏

k=1

Γ(g∗dk + h∗dk)

Γ(g∗dk)Γ(h
∗
lk))

θ
g∗
dk

−1

dk

(

1−
k
∑

j=1

θdj

)ζ∗
dk

(6.26)
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where,

rdl =
ρdl

∑L

l=1 ρdl
, ϕmdnk =

δmdnk
∑K

k=1 δmdnk

(6.27)

ρdl = exp

{

〈

lnκl
〉

+
l−1
∑

s=1

〈

ln(1−κs)
〉

+Rl+
K
∑

k=1

(σlk−1)
〈

ln θdk
〉

+γlk

〈

1−
k
∑

j=1

θdj

〉

}

(6.28)

δmdnk = exp(
〈

ln βmkv

〉

+
〈

ln θdk
〉

) (6.29)

Here, R⃗ is the taylor series approximations of
〈

ln Γ(σ+τ)
Γ(σ)Γ(τ)

〉

and is given by,

R⃗ = ln
Γ(σ + τ)

Γ(σ)Γ(τ)
+ σ
[

Ψ(σ + τ)− Ψ(σ)
]

(
〈

ln σ
〉

− ln σ)

+ τ
[

Ψ(σ + τ)− Ψ(τ)
]

(
〈

ln τ
〉

− ln τ)

+ 0.5σ2
[

Ψ ′(σ + τ)− Ψ ′(σ)
]〈

(ln σ − ln σ)2
〉

+ 0.5τ 2
[

Ψ ′(σ + τ)− Ψ ′(τ)
]〈

(ln τ − ln τ)2
〉

+ σ τ Ψ ′(σ + τ)(
〈

ln σ
〉

− ln σ)(
〈

ln τ
〉

− ln τ) (6.30)

υ∗lk =υlk +
D
∑

d=1

〈

ydl
〉

[

Ψ
(

σlk + τ lk
)

− Ψ
(

σlk

)

+ τ lkΨ
′
(

σlk + τ lk
)(〈

ln τlk
〉

− ln τ lk
)

]

σlk (6.31)

s∗lk =slk +
D
∑

d=1

〈

ydl
〉

[

Ψ
(

τ lk + σlk

)

− Ψ
(

τ lk
)

+ σlkΨ
′
(

τ lk + σlk

)(〈

ln σlk
〉

− ln σlk

)

]

τ lk (6.32)

ν∗lk = νlk −

D
∑

d=1

〈

ydl
〉〈

ln θdk
〉

(6.33)
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t∗lk = tlk −

D
∑

d=1

〈

ydl
〉

〈

ln
[

1−
K
∑

j=1

θdj

]

〉

(6.34)

g∗dk = gdk +

Nd
∑

n=1

〈

zdnk
〉

+
L
∑

l=1

〈

ydl
〉

σlk (6.35)

h∗dk = hdk +
L
∑

l=1

〈

ydl
〉

τlk +
K
∑

kk=k+1

ϕdn(kk) (6.36)

λ∗mkv = λmkv +
D
∑

d=1

Nd
∑

n=1

Vm
∑

v=1

ϕmdnkwmdnv (6.37)

c∗l = 1 +
D
∑

d=1

〈

ydl
〉

, d∗l =
〈

κj
〉

+
D
∑

d=1

L
∑

s=l+1

〈

yds
〉

(6.38)

a∗l = al + 1, b∗l = bl −
〈

ln(1− κl)
〉

(6.39)

In the above equations,
〈

·
〉

indicates expectation of the variable and (·) is
the mean of the variable. The values of these expectations [29] and mean are
given by,

〈

ln θdk
〉

=
k
∑

j=1

(

Ψ(gdk)− Ψ(gdk + hdk)
)

(6.40)

〈

1−
k
∑

j=1

θdj

〉

=
k
∑

j=1

(

Ψ(hdk)− Ψ(gdk + hdk)
)

(6.41)

σlk =
υ∗lk
ν∗lk
,
〈

ln σlk
〉

= Ψ
(

υ∗lk
)

− ln ν∗lk (6.42)

〈(

ln σlk − ln σlk

)2〉
=
[

Ψ
(

υ∗lk
)

− ln υ∗lk
]2

+ Ψ ′
(

υ∗lk
)

(6.43)

τ lk =
s∗lk
t∗lk
,
〈

ln τlk
〉

= Ψ
(

s∗lk
)

− ln t∗lk (6.44)

〈(

ln τlk − ln τ lk
)2〉

=
[

Ψ
(

s∗lk
)

− ln s∗lk
]2

+ Ψ ′
(

s∗lk
)

(6.45)
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〈

zmdnk

〉

= ϕmdnk,
〈

ydl
〉

= rdl,
〈

ln βmkv

〉

= Ψ(λmkv)− Ψ(
Vm
∑

f=1

λmkf ) (6.46)

〈

lnκl
〉

= ψ(c∗l )− ψ(c∗l + d∗l ),
〈

ln(1− κl)
〉

= ψ(d∗l )− ψ(c∗l + d∗l ) (6.47)

Ψ(·) and Ψ(·)′ in the above equations indicate the digamma and trigamma
functions respectively. We calculate equations 6.23 - 6.26 iteratively until
convergence is achieved to find the optimal solutions.

6.2.1 Variational solutions for DP-LBLA

The variational solutions for Eq. 6.21 is more or less the same as in the
previous section, except that some definitions of variables are different in
addition to the obvious change in Q(θ⃗). The variational solutions are:

Q(Y) =
D
∏

d=1

L
∏

l=1

r
ydl
dl , Q(Z) =

D
∏

d=1

Nd
∏

N=1

K
∏

k=1

ϕzdnk

dnk , Q(κ⃗) =
L
∏

l=1

Beta
(

κl | c
∗
l , d

∗
l

)

(6.48)

Q(µ⃗) =
L
∏

l=1

K
∏

k=1

ν∗lk
υ∗

lk

Γ(υ∗lk)
µ
υ∗

lk
−1

lk e−ν∗
lk
µlk , Q(σl) =

L
∏

l=1

t∗l
s∗
l

Γ(s∗l )
σ
s∗
l
−1

l e−t∗
l
σl (6.49)

Q(τl) =
L
∏

l=1

Λ∗
l
Ω∗

l

Γ(Ω∗
l )
τ
Ω∗

l
−1

l e−Λ∗

l
τl , Q(β⃗) =

K
∏

k=1

V
∏

v=1

Γ(
∑V

v=1 λ
∗
kv)

∏V

v=1 Γ(λ
∗
kv)

β
λ∗

kv
−1

kv (6.50)

Q(θ⃗) =
D
∏

d=1

K
∏

k=1

Γ(
∑K

k=1 f
∗
dk)

Γ(f ∗
dk)

Γ(g∗d + h∗d)

Γ(g∗d)Γ(h
∗
d)
θ
f∗

dk
−1

dk

×
[

K
∑

k=1

θdk

]g∗
d
−
∑

K

k=1 f
∗

dk

[

1−
K
∑

k=1

θdk

]h∗

d
−1

(6.51)
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where,

rdl =
ρdl

∑L

l=1 ρdl
, ϕdnk =

δdnk
∑K

k=1 δdnk
(6.52)

ρdl =exp

{

〈

lnκl
〉

+
l−1
∑

s=1

〈

ln(1− κs)
〉

+Rl + Sl + (µlk − 1)
〈

ln θdk
〉

+
(

σl −

K
∑

k=1

µlk

)〈

ln
[

K
∑

k=1

θdk
]

〉

+ (τl − 1)
〈

ln
[

1−
K
∑

k=1

θdk

]〉

}

(6.53)

Due to intractability, we use taylor series expansions for
〈Γ(

∑
K

k=1 σlk)

Γ(σlk)

〉

and
〈

ln Γ(σ+τ)
Γ(σ)Γ(τ)

〉

denoted by R and S respectively. The approximations are given
as,

Rl = ln
Γ(
∑K

k=1 µlk)
∏K

k=1 Γ(µlk)
+

K
∑

k=1

µlk

[

Ψ
(

K
∑

k=1

µlk

)

− Ψ(µlk)
]

[〈

lnµlk

〉

− lnµlk

]

+
1

2

K
∑

k=1

µ2
lk

[

Ψ ′
(

K
∑

k=1

µlk

)

− Ψ ′(µlk)
]

−
〈

(lnµlk − lnµlk)
2
〉

+
1

2

K
∑

a=1

K
∑

b=1,a ̸=b

µlaµlb

[

Ψ ′
(

K
∑

k=1

µlk

)

(〈

lnµla

〉

− lnµla

)(〈

lnµlb

〉

− lnµlb

)

]

(6.54)

S⃗ = ln
Γ(σ + τ)

Γ(σ)Γ(τ)
+ σ
[

Ψ(σ + τ)− Ψ(σ)
]

(
〈

ln σ
〉

− ln σ)

+ τ
[

Ψ(σ + τ)− Ψ(τ)
]

(
〈

ln τ
〉

− ln τ)

+ 0.5σ2
[

Ψ ′(σ + τ)− Ψ ′(σ)
]〈

(ln σ − ln σ)2
〉

+ 0.5τ 2
[

Ψ ′(σ + τ)− Ψ ′(τ)
]〈

(ln τ − ln τ)2
〉

+ σ τ Ψ ′(σ + τ)(
〈

ln σ
〉

− ln σ)(
〈

ln τ
〉

− ln τ) (6.55)

υ∗lk =υlk +
D
∑

d=1

〈

ydl
〉

µlk

[

Ψ
(

K
∑

k=1

µlk

)

− Ψ(µlk)

+ Ψ
(

K
∑

k=1

)

K
∑

a ̸=k

(〈

lnµla

〉

− lnµla

)

µla

]

(6.56)
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ν∗lk = νlk −

D
∑

d=1

〈

ydl
〉

[

〈

ln θdk
〉

−
〈

ln
K
∑

k=1

θdk

〉]

(6.57)

s∗l =sl +
D
∑

d=1

〈

ydl
〉

[

Ψ
(

σl + τ l
)

− Ψ
(

σl

)

+ τ lΨ
′
(

σl + τ l
)(〈

ln τl
〉

− ln τ l
)

]

σl

(6.58)

t∗l = tl −
D
∑

d=1

〈

ydl
〉

〈

ln
[

K
∑

k=1

θdk

]

〉

(6.59)

Ω∗
l =Ωlk +

D
∑

d=1

〈

ydl
〉

[

Ψ
(

τ l + σl

)

− Ψ
(

τ l
)

+ σlΨ
′
(

τ l + σl

)(〈

ln σl
〉

− ln σl

)

]

τ l

Λ∗
l = Λl −

D
∑

d=1

〈

ydl
〉

〈

ln
[

1−
K
∑

k=1

θdk

]

〉

(6.60)

f ∗
dk = fdk +

Nd
∑

n=1

〈

zdnk
〉

+
L
∑

l=1

〈

ydl
〉

µlk (6.61)

g∗d = gd +

Nd
∑

n=1

K
∑

k=1

〈

zdnk
〉

+
L
∑

l=1

〈

ydl
〉

σl (6.62)

h∗d = hd +
L
∑

l=1

〈

ydl
〉

τl (6.63)

c∗l = 1 +
D
∑

d=1

〈

ydl
〉

, d∗l =
〈

κj
〉

+
D
∑

d=1

L
∑

s=l+1

〈

yds
〉

(6.64)

a∗l = al + 1, b∗l = bl −
〈

ln(1− κl)
〉

(6.65)
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The expectations in these equations are defined with respect to BL dis-
tribution as follows:

〈

ln θdk
〉

=Ψ(fdk)− Ψ
(

K
∑

k=1

fdk

)

+ Ψ(gd)− Ψ(gd + hd) (6.66)

〈

k
∑

k=1

θdk

〉

=
k
∑

k=1

(

Ψ(gd)− Ψ(gd + hd)
)

(6.67)

〈

1−
k
∑

k=1

θdk

〉

=
k
∑

k=1

(

Ψ(hd)− Ψ(gd + hd)
)

(6.68)

σlk =
υ∗lk
ν∗lk
,
〈

ln σlk
〉

= Ψ
(

υ∗lk
)

− ln ν∗lk (6.69)

〈(

ln σlk − ln σlk

)2〉
=
[

Ψ
(

υ∗lk
)

− ln υ∗lk
]2

+ Ψ ′
(

υ∗lk
)

(6.70)

σl =
s∗l
t∗l
,
〈

ln σl
〉

= Ψ
(

s∗l
)

− ln t∗l (6.71)

〈(

ln σl − ln σl

)2〉
=
[

Ψ
(

s∗l
)

− ln s∗l
]2

+ Ψ ′
(

s∗l
)

(6.72)

τ lk =
Ω∗

l

Λ∗
l

,
〈

ln τl
〉

= Ψ
(

Ω∗
l

)

− ln Λ∗
l (6.73)

〈(

ln τl − ln τ l
)2〉

=
[

Ψ
(

Ω∗
l

)

− ln Ω∗
l

]2
+ Ψ ′

(

Ω∗
l

)

(6.74)

〈

zdnk
〉

= ϕdnk,
〈

ydl
〉

= rdl,
〈

ln βkv
〉

= Ψ(κkv)− Ψ(
V
∑

f=1

κkf ) (6.75)

〈

lnκl
〉

= ψ(c∗l )− ψ(c∗l + d∗l ),
〈

ln(1− κl)
〉

= ψ(d∗l )− ψ(c∗l + d∗l ) (6.76)

We follow the same process as before and compute equations 6.48 - 6.51
repeatedly until convergence.
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6.3 Experimental Results

In order to evaluate our multi-lingual model, we choose a dataset which com-
prises transcripts of TED talks on varied topics from Kaggle 1. The parallel
dataset consists of talks from various disciplines like physics, environment,
politics, relationships, pollution, space, etc. In order to perform a deep anal-
ysis pertaining to the quality of the extracted topics we keep things simple
by choosing 99 talks which comprises of around 30 transcripts of talks closely
related to three different topics namely, astrophysics, relationships and cli-
mate change. These talks do not exactly belong to the same class and might
be slightly different in many cases. For example, a talk from astrophysics
might be about space travel and aliens or experiments on dark matter. The
variance in these topics with a small dataset helps us to see how our model is
able to perform in situations where only limited data is available for learning.
We calculate UMass coherence score [60] as in section 2.7.2 to evaluate the
model

The first experiment we conducted is to test the quality of topics extracted
by our models compared to other standard models. We use transcripts from
only French and English to simplify analysis, however, the models will per-
form equally if compared with more languages as well. LDA being the basic
and widely used topic extraction model will be our benchmark to compare,
followed by Poly-LDA [103] which is a multilingual model based on LDA.
We compare the coherence scores of the extracted topics with respect to
each language separately. We also wanted to test how the model performs
if a Dirichlet process mixture is not used for the mixture. In this case the
parameter πl will act as mixing coefficients of the model and the equations
will transform accordingly. These models will be represented as ‘Mix-LGDA’
and ‘Mix-LBLA’ respectively. To study the effect of modifying the prior dis-
tributions, we also compare with ‘DP-LDA’ and ‘mix-LDA’ which are the
LDA counterparts of our models.

Tables 6.1 and 6.2 show the coherence score for the different models for
English and French languages respectively while varying the number of topics
K. We can see that the coherence score is the highest when the number
of topics is set as 5. Even though our data consisted of documents from
three main categories, most of them had multidisciplinary concepts which
was clearly captured by almost all of the models. LDA falters here when

1https://www.kaggle.com/datasets/miguelcorraljr/ted-ultimate-dataset
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extracting topics in English in addition to mix-LBLA.

Table 6.1: Average coherence score of topics for TED talks transcripts in
English

Model K=3 K=5 K=7 K=9

LDA -0.44 -0.45 -0.53 -0.61
Poly-LDA -0.44 -0.43 -0.52 -0.59
Mix-LDA -0.45 -0.44 -0.52 -0.52
DP-LDA -0.42 -0.41 -0.48 -0.54
Mix-LGDA -0.47 -0.43 -0.48 -0.53
DP-LGDA -0.46 -0.43 -0.45 -0.51
Mix-LBLA -0.39 -0.38 -0.44 -0.47
DP-LBLA -0.39 -0.35 -0.41 -0.44

Table 6.2: Average coherence score of topics for TED talks transcripts in
French

Model K=3 K=5 K=7 K=9

LDA -5.97 -5.29 -6.29 -6.84
Poly-LDA -5.67 -5.67 -6.59 -7.02
Mix-LDA -5.45 -5.25 -5.73 -6.88
DP-LDA -5.33 -5.16 -5.75 -6.57
Mix-LGDA -5.59 -5.05 -5.56 -6.88
DP-LGDA -5.36 -4.90 -5.33 -5.88
Mix-LBLA -5.27 -4.79 -5.43 -5.99
DP-LBLA -5.10 -4.50 -5.25 -5.25

In general, we can observe that the coherence score is higher for mixture
models without Dirichlet process assumption compared to LDA and poly-
LDA. Similarly, with the Dirichlet process assumption, the models perform
to the best compared to the rest. This pattern is clearly observed in Figs.
6.3 and 6.4 respectively. Though the coherence scores are different in scale
for French and English, both languages follow a similar pattern.
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Figure 6.3: Coherence score for different models for varying number of topics
in English

Figure 6.4: Coherence score for different models for varying number of topics
in French

In order to analyse deeper, let us consider the topics extracted by our
baseline poly-LDA and the best performing model in terms of coherence,
DP-LBLA. Tables 6.3 and 6.4 show the French and English topics extracted
by poly-LDA and DP-LBLA respectively. Looking at the topics we can see
how good DP-LBLA is able to extract parallel topics. Topic 1 represents
astrophysics, topic 2 is a set of common words in all topics, topic 3 is an
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intersection between science and energy, topic 4 shows words corresponding
to relationships and topic 5 is related to climate change. Interestingly, the
word ‘like’ is present in almost all the languages as a major word. This is
because it was used in almost all the talks by different people when they
pause and give examples.

To check how similar the extracted topics are to each other, we calculate
the Jaccard index between the set of words in each topic in both languages.
F and E represents the set of words in the French topic and English topic
respectively. The Jaccard index is then calculated with the formula:

Jac(F,E) =
F ∩ E

F ∪ E
(6.77)

Table 6.3: Jaccard Index between English and French topics extracted by
DP-LBLA

French English F∩E F∪E Jac
‘lumi’, ‘donc’, ‘cette’, ‘like’, ‘dark’, ‘matter’,
‘toiles’, ‘espace’, ‘mati’, ‘black’, ‘light’, ’universe’, 7 13 0.54
‘galaxie’, ‘particules’, ‘galaxy’, ‘galaxies’,
‘galaxies’, ‘univers’ ‘space’, ‘stars’,
‘quand’, ‘chose’, ‘cette’, ‘find’, ‘mars’, ‘well’,
‘cela’, ‘bien’, ‘time’, ‘like’, 2 18 0.11
‘parce’, ‘comme’, ‘donc’, ‘actually’, ‘think’, ‘life’,
‘alors’, ‘tout’ ‘going’, ‘know’,
‘soleil’, ‘surface’,‘cette’, ‘solar’, ‘planet’, ‘water’,
‘solaire’, ‘comme’, ‘ocean’, ‘surface’, 6 14 0.43
‘milliards’, ‘atmosph’, ‘energy’, ‘atmosphere’,
‘syst’, ‘terre’, ‘plan’ ‘years’, ‘system’, ‘earth’,
‘tout’, ‘gens’, ‘cette’, ‘want’, ‘brain’, ‘feel’,
‘autre’, ‘cela’, ‘amour’, ‘person’, ‘really’, 4 16 0.25
‘quelqu’, ‘personne’, ‘think’, ‘laughter’, ‘love’,
‘rires’, ‘quand’ ‘like’, ‘people’
‘donc’, ‘gens’, ‘pays’, ‘really’, ‘much’, ‘think’,
‘probl’, ‘climatique’, ‘going’, ‘need’, ‘climate’, 5 16 0.31
‘cette’, ‘changement’, ‘global’, ‘change’,
‘tout’, ‘monde’, ‘cela’, ‘world’, ‘people’
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Table 6.4: Jaccard Index between English and French topics extracted by
Poly-LDA

French English F∩E F∪E Jac
‘mati’, ‘lumi’, ‘plastique’, ‘dark’, ‘galaxy’,
‘espace’, ‘particules’, ‘galaxies’, ‘plastic’, 6 14 0.43
‘toiles’, ‘galaxies’, ‘donc’, ‘black’, ‘light’, ‘universe’
‘cette’, ‘univers’ ‘like’, ‘stars’, ‘space’
‘devons’, ‘monde’, ‘donc’, ‘year’, ‘world’, ‘carbon’,
‘cette’, ‘changement’, ‘people’, ‘going’, 5 16 0.31
‘climatique’, ‘missions’, ‘climate’, ‘global’,
‘tout’, ‘probl’, ‘cela’ ‘need’, ‘change’, ‘energy’
‘trois’, ‘fois’, ‘moins’, ‘much’, ‘many’, ‘make’,
‘deux’, ‘comme’, ‘first’, ‘percent’, 2 18 0.11
‘gens’, ‘monde’, ‘cette’, ‘system’, ‘people’,
‘jour’, ‘bien’ ‘years’, ‘world’, ‘water’
‘alors’, ‘comme’, ‘gens’, ‘want’, ‘life’, ‘know’,
‘autre’, ‘amour’, ‘really’, ‘like’, ‘going’, 4 16 0.25
‘cette’, ‘rires’, ‘quand’ ‘laughter’, ‘people’,
‘cela’, ‘tout’ ‘think’, ‘love’
‘soleil’, ‘cela’, ‘donc’, ‘years’, ‘look’, ‘mars’,
‘tout’, ‘mars’, ‘life’, ‘earth’ 4 16 0.25
‘cette’, ‘surface’, ‘plan’ ‘going’, ‘actually’, ‘like’,
‘comme’, ‘terre’ ‘planet’, ‘know’

Words which means the same in both languages are considered to be
intersection between the two sets in our case. For example, ‘lumi’ which is
the shortened word for ’lumiere’ in French, means ‘light’ in English which
would be counted as intersection. There are some cases where a word might
have multiple equivalents in the other language. For example, in topic 5 for
DP-LBLA, the French word ‘monde’ can mean both ‘global and ‘world’ in
English. In these cases we consider both the English words as intersection.
Based on our analysis, we found that DP-LBLA had 24 similar words overall
in the 5 topics averaging a Jaccard index of 0.33 whereas poly-LDA had only
21 words in common with an average Jaccard index of 0.27. In addition
to these metrics, eye-balling the topics would clearly indicate the quality of
topics derived by DP-LBLA.
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Furthermore, since we found that using the interactive version, the quality
of topic can be improved considerably form the Chapter 4, we apply the idea
to improve the quality of these derived topics. The experiment was conducted

Table 6.5: Improvement in coherence score for DP-LBLA with interactive
learning

Model (Language) η1 = 0.2 η1 = 0.4 η1 = 0.6 η1 = 0.8 η1 = 1

DP-LBLA (En) -0.31 -0.32 -0.32 -0.35 -0.35
DP-LBLA (Fr) -3.96 -3.96 -4.15 -4.39 -4.50

varying the weights for the objective and subjective probabilities. We can
see that as we keep increasing the value of η1, the coherence decreases. It is
to be noted that, at η1 = 1, the model acts as a regular DP-LBLA model.
The observations clearly show the effect of varying the impact of user defined
probabilities. The pattern is plainly visible in Fig. 6.5 and Fig. 6.6. In fig.
6.5 and Fig. 6.6, η denotes η1 in general for simplicity. In case, the user
modifying the probabilities is new to the topics involved in the documents,
keeping a higher value for η1 will help maintaining the performance of our
model.

Figure 6.5: Improvement in coherence score from DP-LBLA with interactive
learning for English topics
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Figure 6.6: Improvement in coherence score from DP-LBLA with interactive
learning for French topics
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Chapter 7
Conclusion

In this thesis, we have proposed novel ideas to improve existing topic mod-
elling approaches. We have proposed models that are flexible and can be used
to tackle a number of practical tasks. A few of our applications show how the
model can be easily tweaked to handle a specific problem. The adaptability
of our models is quite evident from the experiments. A fine analysis has been
carried out in each of the chapters to examine the effectiveness of our models
with respect to varied applications.

In chapter 3, we have presented two novel topic models which can be
used in a number of applications provided the input is count data. We have
explained the mathematical model and provided a variational method to
estimate the parameters both for batch processing and online use cases. We
have also presented a way to convert the model into a supervised setting
which learns the topics pertaining to classes simultaneously during training.
The experiments were done with less documents for training to test how good
the model performs in cases where data availability is low since this is the
case in several industrial applications. The accuracy for various applications
for classification stands proof for the efficiency of the models in detecting
topics. Both models are found to perform really well and may provide efficient
alternatives to the standard methods.

In Chapter 4, we have introduced an interactive algorithm, which can
be used with our basic models to achieve better quality topics. The abil-
ity to tune the effect of user input is another useful asset that prevents us
from wrongly modifying the topic probabilities. The experiments with two
standard datasets prove that our model is capable of drawing quality topics
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compared to the other baseline models with some input from the user. We
also explored the flexibility of our model to control the impact of user inputs.
The results indicate that our model could be very efficient in tasks involving
unsupervised topic learning.

Chapters 5 and 6 show the flexibility of our model to be easily adopted
for two interesting applications namely, recommendation systems and mul-
tilingual topic extraction. In the case of recommendation systems, from the
example queries, we see that our models are able to deliver promising sugges-
tions that the user might like. Using biterms in conjunction with our mod-
els tend to improve the results considerably. Especially, Bi-LBLMA model
proves to be a good alternative to LDA based on the results from both exper-
iments. Considering the results for English and French language documents
in the case of multilingual topic extraction, both the models perform better
than the baseline models LDA and poly-LDA. Though DP-LBLA performs
a little better than DP-LGDA their metrics are still closely on par with each
other. Our experiments also reveal the advantages of using GD and BL dis-
tributions in place of Dirichlet. The method also overcomes the drawback of
manual component selection in our model. The performance boost achieved
by interactive learning proves to be promising.

The overall performance of our model is found to be quite satisfactory as
evident from the results. Future work may include improving the variational
algorithm by relaxing the independency constraint by using a collapsed varia-
tional algorithm. A wide range of altered variational algorithms are available
that could further speed up inference [104]. With the proliferation of ANN
based models in multiple domains it would be an interesting approach to
see how our models integrate with neural topic models (NTM). Using our
models in conjunction with models like variational auto encoders (VAE) and
generative adversarial networks (GANs) would be first steps to move forward
in the scope of ANN.
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Appendix A
Proof of Equations

The proof of equations for the variational solutions is explained in detail in
this chapter. The procedure followed in these derivations can be extended to
other solutions easily. According to Eq. 3.19, every term other than Qj(Θj)
is considered to be a constant. This variational solution can be found by
taking the logarithmic form of Eq. 3.12 and Eq. 3.15. We illustrate the
derivations for a few parameters in LGDMA model, which can be extended
to the rest of the parameters and in a broader sense, to LBLMA as well.

Variational solution to Q(zdnk)

To find the variational solution for Q(zdnk), let’s gather the terms that con-
tains zdnk from Eq. 3.12. Taking the logarithm of these collected terms, we
get,

lnQ(zdnk) =
V
∑

v=1

zdnkwdnv ln βkv + zdnk ln θdk + const

=
V
∑

v=1

zdnk [wdnv ln βkv + ⟨ln θdk⟩] + const (A.1)

const in the equations indicate the rest of the parameters which are assumed
to be constant due to independency. It is known that wdnv = 1 only when
the word in the vocabulary v is the same as respective word and hence we
can rewrite the equation as,

lnQ(zdnk) = zdnk [ln βkv + ⟨ln θdk⟩] + const (A.2)
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Let lnδdnk = ln βkv + ⟨ln θdk⟩. This changes the equation to,

lnQ(zdnk) = zdnk ln δdnk + const (A.3)

which when exponentiated turns to,

Q(zdnk) ∝ δzdnk

dnk (A.4)

Normalizing δdnk with ϕdnk = δdnk∑
K

k=1 δdnk

. We can write the final variational

solution as,
Q(zdnk) = ϕzdnk

dnk (A.5)

since, this is the form of a multinomial distribution, we can write ⟨zdnk⟩ =
ϕdnk. Similarly, we can derive the equations corresponding to Q(ydl) following
the same method.

Variational solution for Q( ⃗sigma)

Similarly, taking the logarithmic terms involving σlk, we can write,

lnQ(σlk) =
D
∑

d=1

⟨ydl⟩ Fl + σlk ln θdk + (ulk − 1) ln σlk − νlkσlk + const (A.6)

provided, Fl =
〈

ln Γ(σlk+τlk)
Γ(σlk)Γ(τlk)

〉

. Since this expectation is not tractable we

use an approximation similar to [105] which gives,

F ≥ ln σ [(ψ(σ + τ)− ψ(σ) + τψ′(σ + τ)) (⟨ln τ⟩ − ln τ)] σ (A.7)

substituting this in Eq. A.6 and collecting the similar terms, we can rewrite
the equation for lnQ(σlk) as,

lnQ(σlk) = ln σlk

[

D
∑

d=1

⟨ydl⟩
[

ψ(σlk + τ lk)− ψ(σlk)

+ τ lkψ
′(σlk + τ lk)

]

(⟨ln τlk⟩ − ln τ lk) σlk + ujl − 1

]

+ σlk

[

D
∑

d=1

⟨ydl⟩ ln θdk − νlk

]

+ const (A.8)
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We can see that Eq. A.8 is the logarathmic form of Gamma distribution.
Hence, exponentiating this equation will result in the variational solution,

Q(σlk) = G(σlk | υ
∗
lk, ν

∗
lk) (A.9)

where υlk and νlk is given by equations 3.29 and 3.31 respectively. Like-
wise, we can find the variational solutions for the rest of the parameters for
LGDMA. The inference method for LBLMA also follows the same proce-
dure.
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