2,124 research outputs found

    Learning multifractal structure in large networks

    Full text link
    Generating random graphs to model networks has a rich history. In this paper, we analyze and improve upon the multifractal network generator (MFNG) introduced by Palla et al. We provide a new result on the probability of subgraphs existing in graphs generated with MFNG. From this result it follows that we can quickly compute moments of an important set of graph properties, such as the expected number of edges, stars, and cliques. Specifically, we show how to compute these moments in time complexity independent of the size of the graph and the number of recursive levels in the generative model. We leverage this theory to a new method of moments algorithm for fitting large networks to MFNG. Empirically, this new approach effectively simulates properties of several social and information networks. In terms of matching subgraph counts, our method outperforms similar algorithms used with the Stochastic Kronecker Graph model. Furthermore, we present a fast approximation algorithm to generate graph instances following the multi- fractal structure. The approximation scheme is an improvement over previous methods, which ran in time complexity quadratic in the number of vertices. Combined, our method of moments and fast sampling scheme provide the first scalable framework for effectively modeling large networks with MFNG

    Multifractal analysis of perceptron learning with errors

    Full text link
    Random input patterns induce a partition of the coupling space of a perceptron into cells labeled by their output sequences. Learning some data with a maximal error rate leads to clusters of neighboring cells. By analyzing the internal structure of these clusters with the formalism of multifractals, we can handle different storage and generalization tasks for lazy students and absent-minded teachers within one unified approach. The results also allow some conclusions on the spatial distribution of cells.Comment: 11 pages, RevTex, 3 eps figures, version to be published in Phys. Rev. E 01Jan9

    Multifractal Analysis of the Coupling Space of Feed-Forward Neural Networks

    Full text link
    Random input patterns induce a partition of the coupling space of feed-forward neural networks into different cells according to the generated output sequence. For the perceptron this partition forms a random multifractal for which the spectrum f(α)f(\alpha) can be calculated analytically using the replica trick. Phase transition in the multifractal spectrum correspond to the crossover from percolating to non-percolating cell sizes. Instabilities of negative moments are related to the VC-dimension.Comment: 10 pages, Latex, submitted to PR

    The Methods to Improve Quality of Service by Accounting Secure Parameters

    Full text link
    A solution to the problem of ensuring quality of service, providing a greater number of services with higher efficiency taking into account network security is proposed. In this paper, experiments were conducted to analyze the effect of self-similarity and attacks on the quality of service parameters. Method of buffering and control of channel capacity and calculating of routing cost method in the network, which take into account the parameters of traffic multifractality and the probability of detecting attacks in telecommunications networks were proposed. The both proposed methods accounting the given restrictions on the delay time and the number of lost packets for every type quality of service traffic. During simulation the parameters of transmitted traffic (self-similarity, intensity) and the parameters of network (current channel load, node buffer size) were changed and the maximum allowable load of network was determined. The results of analysis show that occurrence of overload when transmitting traffic over a switched channel associated with multifractal traffic characteristics and presence of attack. It was shown that proposed methods can reduce the lost data and improve the efficiency of network resources.Comment: 10 pages, 1 figure, 1 equation, 1 table. arXiv admin note: text overlap with arXiv:1904.0520

    Time series classification based on fractal properties

    Full text link
    The article considers classification task of fractal time series by the meta algorithms based on decision trees. Binomial multiplicative stochastic cascades are used as input time series. Comparative analysis of the classification approaches based on different features is carried out. The results indicate the advantage of the machine learning methods over the traditional estimating the degree of self-similarity.Comment: 4 pages, 2 figures, 3 equations, 1 tabl

    Multifractality and percolation in the coupling space of perceptrons

    Full text link
    The coupling space of perceptrons with continuous as well as with binary weights gets partitioned into a disordered multifractal by a set of p=γNp=\gamma N random input patterns. The multifractal spectrum f(α)f(\alpha) can be calculated analytically using the replica formalism. The storage capacity and the generalization behaviour of the perceptron are shown to be related to properties of f(α)f(\alpha) which are correctly described within the replica symmetric ansatz. Replica symmetry breaking is interpreted geometrically as a transition from percolating to non-percolating cells. The existence of empty cells gives rise to singularities in the multifractal spectrum. The analytical results for binary couplings are corroborated by numerical studies.Comment: 13 pages, revtex, 4 eps figures, version accepted for publication in Phys. Rev.

    Rotated multifractal network generator

    Get PDF
    The recently introduced multifractal network generator (MFNG), has been shown to provide a simple and flexible tool for creating random graphs with very diverse features. The MFNG is based on multifractal measures embedded in 2d, leading also to isolated nodes, whose number is relatively low for realistic cases, but may become dominant in the limiting case of infinitely large network sizes. Here we discuss the relation between this effect and the information dimension for the 1d projection of the link probability measure (LPM), and argue that the node isolation can be avoided by a simple transformation of the LPM based on rotation.Comment: Accepted for publication in JSTA
    corecore