6 research outputs found

    On the smoothness of nonlinear system identification

    Full text link
    We shed new light on the \textit{smoothness} of optimization problems arising in prediction error parameter estimation of linear and nonlinear systems. We show that for regions of the parameter space where the model is not contractive, the Lipschitz constant and β\beta-smoothness of the objective function might blow up exponentially with the simulation length, making it hard to numerically find minima within those regions or, even, to escape from them. In addition to providing theoretical understanding of this problem, this paper also proposes the use of multiple shooting as a viable solution. The proposed method minimizes the error between a prediction model and the observed values. Rather than running the prediction model over the entire dataset, multiple shooting splits the data into smaller subsets and runs the prediction model over each subset, making the simulation length a design parameter and making it possible to solve problems that would be infeasible using a standard approach. The equivalence to the original problem is obtained by including constraints in the optimization. The new method is illustrated by estimating the parameters of nonlinear systems with chaotic or unstable behavior, as well as neural networks. We also present a comparative analysis of the proposed method with multi-step-ahead prediction error minimization

    Control of Unknown Nonlinear Systems with Linear Time-Varying MPC

    Get PDF
    We present a Model Predictive Control (MPC) strategy for unknown input-affine nonlinear dynamical systems. A non-parametric method is used to estimate the nonlinear dynamics from observed data. The estimated nonlinear dynamics are then linearized over time-varying regions of the state space to construct an Affine Time-Varying (ATV) model. Error bounds arising from the estimation and linearization procedure are computed by using sampling techniques. The ATV model and the uncertainty sets are used to design a robust Model Predictive Controller (MPC) which guarantees safety for the unknown system with high probability. A simple nonlinear example demonstrates the effectiveness of the approach where commonly used estimation and linearization methods fail

    Learning-based predictive control for linear systems: a unitary approach

    Full text link
    A comprehensive approach addressing identification and control for learningbased Model Predictive Control (MPC) for linear systems is presented. The design technique yields a data-driven MPC law, based on a dataset collected from the working plant. The method is indirect, i.e. it relies on a model learning phase and a model-based control design one, devised in an integrated manner. In the model learning phase, a twofold outcome is achieved: first, different optimal p-steps ahead prediction models are obtained, to be used in the MPC cost function; secondly, a perturbed state-space model is derived, to be used for robust constraint satisfaction. Resorting to Set Membership techniques, a characterization of the bounded model uncertainties is obtained, which is a key feature for a successful application of the robust control algorithm. In the control design phase, a robust MPC law is proposed, able to track piece-wise constant reference signals, with guaranteed recursive feasibility and convergence properties. The controller embeds multistep predictors in the cost function, it ensures robust constraints satisfaction thanks to the learnt uncertainty model, and it can deal with possibly unfeasible reference values. The proposed approach is finally tested in a numerical example

    Learning multi-step prediction models for receding horizon control

    No full text
    In this paper, the derivation of multi-step-ahead prediction models from sampled input-output data of a linear system is considered. Specifically, a dedicated prediction model is built for each future time step of interest. Each model is linearly parametrized in a suitable regressor vector, composed of past output values and past and future input values. In addition to a nominal model, the set of all models consistent with data and prior information is derived as well, making the approach suitable for robust control design within a Model Predictive Control framework. The resulting parameter identification problem is solved through a sequence of convex programs. Convergence of the identified error bounds to their theoretical minimum is demonstrated, under suitable assumptions on the measured data, and features like worst-case accuracy computation are illustrated in a numerical example
    corecore