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Abstract— We present a Model Predictive Control (MPC)
strategy for unknown input-affine nonlinear dynamical systems.
A non-parametric method is used to estimate the nonlinear
dynamics from observed data. The estimated nonlinear dynam-
ics are then linearized over time-varying regions of the state
space to construct an Affine Time-Varying (ATV) model. Error
bounds arising from the estimation and linearization procedure
are computed by using sampling techniques. The ATV model
and the uncertainty sets are used to design a robust Model
Predictive Controller (MPC) which guarantees safety for the
unknown system with high probability. A simple nonlinear
example demonstrates the effectiveness of the approach where
commonly used estimation and linearization methods fail.

I. INTRODUCTION

Learning the underlying dynamics model of a process has
been studied extensively in the traditional system identifi-
cation literature. Such techniques can be roughly classified
into linear [1], [2] and nonlinear [3], [4] methods applied to
time-variant and time-invariant systems. For a comprehen-
sive review of the topic we refer the reader to [5]. Both
methods have been integrated in the MPC framework in
which system identification strategies are used to estimate
the model dynamics [6]–[8]. For nonlinear systems a lin-
earization step is usually required to efficiently compute the
MPC control action. Common approaches include successive
system linearization [9], feedback linearization [10] and real-
time iteration schemes [11].

Estimation methods are naturally accompanied by sta-
tistical uncertainty. Instability and constraint violation can
occur if such uncertainty is not taken into account in the
control design. For linear systems, one method to account
for the discrepancy between the actual and estimated dy-
namics in the control design, is to incorporate the estimation
uncertainty into a robust control framework. The authors
in [12], [13] used a linear regression strategy to identify
both a nominal model and the disturbance domain to design
a robust controller. In adaptive MPC strategies [14]–[16],
set-membership approaches are used to identify the set of
possible parameters and/or the domain of the uncertainty that
characterize the system’s model. Afterwards, robust MPC
strategies for additive [17], [18] or parametric [19]–[23]
uncertainty are used to guarantee robust recursive constraint
satisfaction. Another approach to estimate nonlinear systems
is via Gaussian Process Regression (GPR) [7], [24]–[26].

1The authors are with the Department of Mechanical Engineer-
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dimitri@berkeley.edu

2The author is with the Department of Mechanical and Civil Engineering,
California Institute of Technology, Pasadena, CA 91125 USA

GPR can be used to identify a nominal model and confidence
bounds that may be used to tighten the constraint set over
the planning horizon.

We consider nonlinear input affine systems subject to
bounded additive uncertainty. Our contributions can be out-
lined as follows. We first provide a method to estimate
the unknown nonlinear dynamics. Then we outline a novel
method to linearize the nonlinear estimated dynamics around
an open loop trajectory obtained from the previous MPC time
step. In particular, we use information from the codomain
of the estimated dynamics function to obtain linearization
regions in the domain that satisfy certain criteria. The benefit,
compared to commonly used linearization techniques, is that
by linearizing using information from the codomain we can
control for the linearization error. Furthermore, the control
design that incorporates this technique, is computationally
more efficient compared to a piece-wise affine control for-
mulation. We design a robust MPC that accounts for the
estimation and linearization errors as well as the uncertainty
acting on the system. The controller safely steers the system
to the goal set while providing probabilistic guarantees for
constraint satisfaction. Finally, we illustrate the advantages
of our method using a simple and intuitive demonstration.

The paper is organised as follows. Section II describes
the problem formulation. The next section introduces a
general MPC formulation with time-varying constraints. In
Sections IV and V we present the estimation and lineariza-
tion techniques respectively. Section VI presents the control
algorithm. Finally, Section VII presents a simple illustration
that showcases the advantages of our method.

II. PROBLEM FORMULATION

We are interested in controlling a discrete time dynamical
system governed by nonlinear dynamics of the following
form

xt+1 = f(xt) +But + wt, (1)

with time index t ∈ Z+, state vector xt ∈ Xt ⊆ Rn,
control input vector ut ∈ Ut ⊆ Rm, known control matrix
B ∈ Rn×m and bounded uncertainty wt ∈ W ⊂ Rn. The
dynamics function f is unknown and it is estimated from
recorded trajectories. Furthermore, the system is subject to
the following state and input constraints

xt ∈ X and ut ∈ U . (2)

Our goal is to synthesize a control policy π : X → U
which steers the system from a starting state xs to the target
state-input pair (xf , uf ), while satisfying state and input
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constraints (2). For the rest of the paper we will make the
following assumptions.

Assumption 1. We are given a feasible trajectory that can
drive the system from xs to xf .

Assumption 2. We have access to a data set D consisting
of the following states-action tuples gathered from past
trajectories of the system

(xj , xj+, u
j)

where xj+ = f(xj) +Buj , for j = 1, . . . ,M .

The first assumption is required for the first time step of
our algorithm covered in Section VI. The second assumption
allows us to exploit these trajectories to construct a time-
varying approximation of the system dynamics from (1) as
will be shown in Sections IV and V. The dynamics function
f is unknown, but we assume that we have access to state
measurements.

III. TIME-VARYING MODEL PREDICTIVE CONTROL

This section presents the time-varying MPC formulation
to synthesize the control policy π. More specifically, at time
t we solve

J∗(xt, Tt) = min
ut|t,...,ut+T |t

t+Tt−1∑
k=t

h(x̄k|t, uk|t) +Q(x̄t+Tt|t)

s.t. x̄t|t − xt ∈ Eαt|t, uk|t ∈ Uk|t (3a)

x̄k+1|t = f̂k|t(x̄k|t) +Buk|t (3b)
x̄k|t ∈ Xk|t 	 Eαk|t, (3c)

x̄t+Tt|t ∈ O 	 E
α
t+Tt|t (3d)

∀k = t, . . . , t+ Tt − 1, (3e)

where the stage cost satisfies h(x, u) > 0, ∀x ∈ Rn \
{xf}, ∀u ∈ Rm \{uf} and h(xf , uf ) = 0. In (3) xk|t is the
predicted state at time k computed at time t. Tt denotes the
MPC horizon, Q the terminal convex cost function while xt
is the actual state of the system at time t1. f̂k|t is the time-
varying approximation of the nonlinear dynamics in (1) and
Xk|t is the set in which this approximation is valid. The
sets Eαk|t represent the uncertainty from the estimation errors
and model noise for a confidence level α. The expression
Xk|t	Eαk|t quantifies how conservative the controller should
be in order to complete the task successfully in the presence
of the aforementioned uncertainties. This constraint tight-
ening technique is standard in robust MPC [17], [27]. The
subsequent sections detail the construction of the sets Xk|t
and Eαk|t.

The optimal input sequence obtained from problem (3)
ū∗t|t, . . . , ū

∗
t+Tt−1|t steers the system from the current state

xt to the goal set O. Given the optimal solution the MPC
policy is

ut = π(xt) = u∗t|t. (4)

1The symbols ⊕ and 	 denote the Minkowski sum and Pontryagin
difference respectively.

At the next time step t + 1, we solve (3) using the new
measured state xt+1 and the whole process is repeated until
the goal set is reached.

In what follows we show how to construct the prediction
model f̂k|t from historical data. First, we introduce a nonlin-
ear estimator f̂ to identify the system dynamics in (1). After-
wards, we propose a sampling-based linearization strategy to
approximate the nonlinear estimator with a linear function.
We also compute error bounds and the regions of the state
space where the approximation is valid.

IV. NONLINEAR MODEL ESTIMATION

In this section, we present the nonlinear estimation strat-
egy. In particular, we use the stored data set D from Assump-
tion 2 along with non-parametric regression to estimate the
nonlinear dynamics function [8], [28]. The estimate f̂(xt) at
point xt is given by a linear regression of the points f(xj)
on xj ,∀j. These points are weighted by a chosen kernel
function K, which in our case is the Epanechnikov function
[29]. The estimated function at a generic state xt is computed
by solving the following problem

â(xt), Â(xt) = argmin
A∈Rn×n

a∈Rn

M∑
j=1

||f(xj)−a−Axj ||22K(xt, x
j),

(5)
where Â(xt) denotes the dependence of Â on the state xt,
Axj denotes a matrix vector multiplication and the point
estimate f̂(xt) is given by

f̂(xt) = â(xt) + Â(xt)xt. (6)

In the next section we will be using (5) to obtain point
estimates of the dynamics on states belonging to previously
computed trajectories. Furthermore, we will be defining
regions of the state space where these affine system approx-
imations are valid.

Estimating the model from a finite set of data points intro-
duces statistical uncertainty. We are interested in estimating
confidence regions for (6) of the form

P(f̂(x) ∈ Sα(x)) ≥ 1− α,∀x ∈ X , (7)

where Sα(x) denotes the set we expect f̂(x) to lie in with
probability 1−α. We quantify this uncertainty by calculating
percentile confidence intervals using bootstrap samples from
D [30]. We denote the lower and upper bound of that set
with Sα/2(x) ∈ Rn and S1−α/2(x) ∈ Rn respectively.
The worst case n-ary Cartesian product of uncertainties that
occurs within a set X is denoted with

Smax
X :=

[
min
x∈X
Sα/2(x),max

x∈X
S1−α/2(x)

]
, (8)

where the min and max are taken component-wise and the
dependence of Smax

X on α is omitted for simplicity. After
obtaining f̂ at xt using (5) the estimated model of the
system is

xt+1 = â(xt) + Â(xt)xt +But,



where xt ∈ Xt and ut ∈ Ut. It should be noted that although
f̂(xt) from (6) is a nonlinear function in xt, it is affine for
fixed â and Â.

Up until now we have encountered two sources of uncer-
tainty. The first one is the model noise wt and the second
is the uncertainty due to the estimation. Before developing
the framework that deals with these uncertainties, we need to
convert the estimated dynamics function in a format that will
allow us to design a robust MPC. The next section outlines
a method that adaptively approximates a nonlinear function
with a locally affine one.

V. AFFINE TIME-VARYING MODEL APPROXIMATION

When the system model is nonlinear and unknown, the
optimal control policy may be approximated after estimating
the system dynamics. Common approaches first compute
a piecewise affine model estimate which is then used to
design a Hybrid MPC. However, these strategies are compu-
tationally expensive as the Hybrid MPC is being recast as a
Mixed Integer Quadratic Program. An alternative approach to
approximate the optimal control policy from (3) is to estimate
a nonlinear model and then design a nonlinear MPC problem
which is solved using a Real Time Iteration (RTI) scheme
or a nonlinear optimization solver.

This section describes a method that locally linearizes the
estimated dynamics function. Furthermore, it defines regions
where the difference between the linearized and nonlinear
estimated dynamics is bounded. This linearization strategy
allows us to formulate (3) as a convex optimization problem
that can be solved efficiently.

In order to predict xt+1 as accurately as possible our goal
is to linearize the estimated function f̂ in a region around
xt. Intuitively, in one dimension, the larger the slope of f̂
is around xt the tighter the linearization region around xt
should be so that deviations from xt do not lead to large
deviations in f̂(xt). To quantify this, we use a linearization
technique that incorporates information about the gradient
of the estimated dynamics function. Algorithm 1 proposes a
technique which samples and gradually expands the domain
space around a chosen linearization point until the error, as
measured in the codomain, surpasses a specified threshold.

Algorithm 1 determines regions in the domain space for
which the linearization of the dynamics is accurate within
εlin tolerance. Intuitively, we construct the linearization re-
gions by incrementally expanding a grid around the lineariza-
tion points. This grid can be seen as a hypercube with grid
points on its edges. Once the linearization error in one of the
grid points becomes greater than the specified threshold we
stop expanding the linearization region. Using information
from the codomain of the function allows us to linearize in
a more informative manner as we are more conservative in
regions where dynamics fluctuate significantly.

By devising an adaptive way to linearize the dynamics
we managed to approximate the system in a form amenable
for robust model predictive control but we also introduced
an additional error term. Given our linearization strategy in
Algorithm 1, we denote the worst case linearization error

Algorithm 1: Local Linear Approximation

1 Input: Linearization states: x`k|t ∈ Rn for
k = t, . . . , t+ Tt

2 Input: Sampling step: ∆x ∈ R
3 Input: Maximum linearization error: εlin
4 Output: Linearization regions Xk|t and estimated

dynamics f̂Xk|t

5 for k = t, . . . , t+ Tt do
6 Compute â← â(x`k|t), Â← Â(x`k|t) from (5)
7 Let f̂Xk|t(x)← â+ Âx

8 Set grid = {x`k|t}
9 Set step← 1

10 while maxx∈grid|f̂(x)− f̂Xk|t(x)| ≤ εlin do
11 V step ← set of all permutations of

(±j∆x, . . . ,±j∆x) ∈ Rn, for
j ∈ {0, . . . , step}

12 grid←
⋃
v∈V step{x`k|t + v}

13 step← step+ 1
14 end
15 Xk|t ← Conv(grid)
16 end
17 Return Xk|t, f̂Xk|t , k = t, . . . , t+ Tt

within an interval Xk|t as

Lmax
Xk|t

:= [−εlin, εlin]n. (9)

Lmax
Xk|t

is the n-ary Cartesian power of the worst-case lin-
earization error among the sampling points in the grid.

Having gathered all the individual pieces we are now ready
to bound the uncertainty in the estimated dynamics by taking
into account the three sources of uncertainty: model noise wt,
estimation uncertainty Smax

X and linearization error Lmax
X .

Remark 1. We underline that it would be possible to guaran-
tee error bounds within the grid, and not just the vertices, by
leveraging the Lipschitz properties of the nonlinear estimate.

Definition 1 (Cumulative Error Sets). Let x∗t|t, . . . , x
∗
t+Tt|t

be a state sequence, Xk|t the linearization regions and f̂Xk|t

the estimated affine dynamics from Algorithm 1 with x`k|t =
x∗k|t for k = t, . . . , t + Tt, Smax

Xk|t
the worst case estimation

error from (8) and Lmax
Xk|t

the linearization errors from (9).
Consider the feasible input sequence [ut|t, . . . , ut+Tt−1|t]
and the associated systems

xk+1|t = f(xk|t) +Buk|t + wk|t, (10a)

x̄k+1|t = f̂Xk|t(x̄k|t) +Buk|t, (10b)

where the true state xk|t and the nominal state x̄k|t are
initialized with xt|t = x̄t|t = x∗t|t. Then we define the
cumulative error sets as

Eαk+1|t = f̂Xk|t(E
α
k|t)⊕W ⊕ S

max
Xk|t
⊕ Lmax

Xk|t
, (11)

with Eαt|t = 0 and a confidence level α in (7).



Proposition 1. Let D be a data set from Assumption 2.
Assume that a trajectory of length Tt is given at time step t,
x∗t|t, x

∗
t+1|t, . . . , x

∗
t+Tt|t . Let Xk|t be the linearization regions

from Algorithm 1 using x`k|t = x∗k|t for k = t, . . . , t + Tt
and Eαk|t the cumulative error sets from Definition 1. If the
nominal system (10b) satisfies x̄k|t ∈ Xk|t 	 Eαk|t ∀k =
t, . . . , t + Tt, then for the true unknown system (10a) we
have that

x̄k|t ⊕ Eαk|t ∈ Xk|t, ∀k = t, . . . , t+ Tt,

with probability (1− α)k−t.

Proof: The main idea behind the proof is breaking up
the dynamics into a nominal and a noise model in which the
latter includes all the uncertainty terms. This strategy is fairly
standard in shrinking tube robust MPC strategies [31]. We
will prove the proposition by induction. First we decompose
the dynamical system ∀k ∈ {t, . . . , t+ Tt} as follows

x̄k+1|t = f̂Xk|t(x̄k|t) +Buk|t (12)

ek+1|t = f̂Xk|t(ek|t) + w̄k|t (13)

xk+1|t = x̄k+1|t + ek+1|t (14)

with ek+1|t ∈ Ek+1|t. Equations (12) and (13) refer to
the dynamics of the nominal system and the error terms
respectively. In (13) w̄k|t now includes the model estimation
uncertainty and the linearization error on top of the system
disturbance wk|t. For k = t

et|t ∈ Et|t (15)
xt|t = x̄t|t ∈ Xt|t (16)

since at time k = t we assume perfect knowledge of the
state, Et|t = {0}. Now we assume that at time step k

ek|t ∈ Ek|t (17)
xk|t = x̄k|t ⊕ Ek|t ∈ Xk|t. (18)

Then at the next time step k + 1 we have that

x̄k+1|t = f̂Xk|t(x̄k|t) +Buk|t (19)

ek+1|t = f̂Xk|t(ek|t) + w̄k|t (20)

where w̄k|t ∈ {w + s + `|w ∈ W, s ∈ Smax
Xk|t

, ` ∈ Lmax
Xk|t
}.

More concisely using Minkowski sums we have that ek+1|t ∈
f̂Xk|t(Ek|t) ⊕W ⊕ Smax

Xk|t
⊕ Lmax

Xk|t
= Ek+1|t. By assumption

we know that x̄k+1|t ∈ Xk+1|t 	 Ek+1|t and using (14) we
obtain that xk+1|t = x̄k+1|t ⊕ Ek+1|t ∈ Xk+1|t. Therefore,
by induction, we have that

x̄k+1|t = f̂Xk|t(x̄k|t) +Buk|t,∀k ∈ {t, . . . , Tt}
ek+1|t = f̂Xk|t(ek|t) + w̄k|t,∀k ∈ {t, . . . , Tt}

The above is true for a confidence level α = 0. However,
in reality sk|t ∈ Smax

Xk|t
for k = t, . . . , t + Tt w.p. 1 − α

for some α > 0. At each time step k = t, . . . , t + Tt we
know that sk|t ∈ Smax

Xk|t
w.p. 1 − α. Hence for an arbitrary

k ∈ {t, . . . , t + Tt} in order for xk|t ∈ x̄k|t ⊕ Ek|t ∈ Xk|t

to hold we require that sk′|t ∈ Smax
Xk′|t

,∀k′ = 1, . . . , k which
happens w.p. (1− α)k−t.

The sections so far quantified the uncertainty that arises
due to model noise, estimation and linearization in a prob-
abilistic manner. We believe this is a realistic strategy for
identification of smooth nonlinear dynamical systems. In the
next Section VI we leverage such identification strategy to
safely control an underlying unknown system.

VI. MODEL PREDICTIVE CONTROL DESIGN

In this section we describe the proposed control strategy
which guarantees safety with a desired probability. The
control action is computed with Algorithm 2 that takes as
inputs the current state xt, the prediction horizon Tt and the
predicted trajectory at the previous time step. First, we use
the predicted trajectory to initialize a candidate solution for
Problem (3) (line 2). Afterwards, in line 3 we compute the
affine approximated dynamics f̂Xk|t , the linearization regions
Xk|t and cumulative error sets Eαk|t using the strategies
from the previous sections. Finally, we solve the finite time
optimal control problem using the approximated dynamics.
Notice that Problem (3) may not be recursively feasible and
therefore we leverage a shrinking horizon methodology using
Assumption 1. As we will discuss in Theorem 1, this strategy
allows us to guarantee safety of Algorithm 2 in closed-loop
with the unknown uncertain system (1) with high probability.

Algorithm 2: Proposed Strategy

1 Given xt, Tt, optimal trajectory at the previous
time step x̄∗k|t−1, k = t, . . . , t+ Tt

2 Set linearization states
x`k|t = x∗k|t−1, k = t, . . . , t+ Tt − 1

3 Compute f̂Xk|t , Xk|t using Algorithm 1 and Eαk|t
using Definition 1

4 if J∗t (xt, Tt) feasible then
5 Set Tt+1 = Tt
6 Let u∗t|t, . . . , u

∗
t+Tt−1 = argmin J∗t (xt, Tt)

7 else
8 Set Eαk|t = Eαk|t−1, Xk|t = Xk|t−1,

f̂Xk|t = f̂Xk|t−1

9 Solve J∗t (xt, Tt − 1)
10 Set Tt+1 = Tt − 1
11 Let u∗t|t, . . . , u

∗
t+Tt−2 = argmin J∗t (xt, Tt− 1)

12 end
13 Return Tt+1, u∗k|t, k = t, . . . , t+ Tt − 1

It is important to clarify why in our proposed algorithm we
used the predicted trajectory of the MPC at the previous time
step to obtain a linearization trajectory x`k|t (line 2). We use
the fact that in MPC at each time step t we obtain an open
loop trajectory from the solution of (3). Along with this tra-
jectory we also obtain the corresponding input sequence that
achieves it. Let xt = x̄t|t be the current state. After applying
the MPC control input (4) as obtained from Algorithm 2,
system (1) will propagate to state xt+1 = f(xt) +But +wt



at the next time step2. Then by solving (3) again, with the
only difference being that the new starting state is x̄t+1|t+1 =
xt+1, we would naturally expect the points of the new open
loop trajectory to lie close to their corresponding points
from the previous trajectory. More specifically, we expect the
euclidean distance between x̄t+1|t, x̄t+2|t, . . . , x̄t+T−1|t and
x̄t+1|t+1, x̄t+2|t+1, . . . , x̄t+T−1|t+1 to be small. This allows
us to use the previously computed trajectory as the trajectory
around which we linearize our estimated dynamics, needed
for the MPC at the next time step.

A. Properties

In this section, we show that the proposed controller is
feasible for all t ∈ {0, . . . , N} with probability (1 − α)N .
In particular, we leverage Proposition 1 to show that with
probability (1 − α)N Algorithm 2 successfully returns a
feasible sequence of input actions at all time instances.

Theorem 1. Consider the policy (4) in closed-loop with
system (1). Let Assumptions 1-2 hold and N be the duration
of the task. Then the closed-loop system (1) and (4) satisfies
state and input constraints with probability (1− α)N at all
times t ∈ {0, . . . , N}.

Proof: As in standard MPC theory we proceed by induc-
tion [32]. Assume that at time t a finite time optimal control
problem solved by Algorithm 2 is feasible and let

[u∗t|t, . . . , u
∗
t+Tt−1|t]

[x̄∗t|t, . . . , x̄
∗
t+Tt|t]

(21)

be the optimal input and state sequence. Notice, that if

xt+1 − x̄∗t+1|t ∈ E1|t, (22)

then at the next time step t+1, we have that the shifted state
and input sequences

[u∗t+1|t, . . . , u
∗
t+Tt−1|t]

[x̄∗t+1|t, . . . , x̄
∗
t+Tt|t]

(23)

are feasible for problem (3) with prediction horizon Tt − 1
and for Ek|t+1 = Ek|t, Xk|t+1 = Xk|t and f̂Xk|t+1

=

f̂Xk|t , ∀k ∈ {t, . . . , Tt − 1}. From Proposition 1 we have
that (22) holds with probability 1 − α, therefore problem
J∗t (xt+1, Tt − 1) from Algorithm 2 is feasible with proba-
bility 1 − α. At time t + 1 Algorithm 2 returns a feasible
sequence of input actions with probability 1− α.
Concluding, we have shown that if at time t Algorithm 2
returns a feasible sequence of inputs, then at time t + 1
Algorithm 2 is feasible with probability 1−α. By assumption
we have that at time t = 0 Problem (3) is feasible for
T0 = T . Therefore, we conclude by induction that for a
control task of length N , Algorithm 2 is feasible and are
satisfied for all t ∈ {0, N} with probability (1− α)N .

The model predictive control design we outlined above
provides a framework to learn and control robustly a nonlin-
ear system. Furthermore, the use of constraint tightening by

2Note that the original trajectory was computed using the estimated
dynamics, so naturally it will not be the same as if using the actual dynamics.

considering the statistical uncertainty and the linearization
error while planning has a self-improving effect on the
algorithm. More specifically, it encourages the controller to
move with smaller steps when these errors are high and hence
gather more informative data points. These data points can
then be used online to provide more accurate estimates.

VII. RESULTS

This section compares our method to three commonly used
approaches to control nonlinear systems.

• The first one is an unconstrained MPC that uses lo-
cally linear approximations of the dynamics around
the linearization trajectory (obtained as explained in
Section V) without imposing any further tightening
constraints, i.e., without constraint (3c) in (3).

• The second one is a linear MPC where the system
dynamics are estimated with a linear model around the
current state xt throughout the domain.

• Finally, we compare our strategy with a naive method
that linearizes the dynamics around a linearization tra-
jectory but determines a priori the size of the regions
in which the linearization is valid. More specifically,
lines 8-16 in Algorithm 1 are no longer needed. The
regions Xk|t now have the form

Xk|t = {x | ||x− x∗k|t||2 ≤ tol}, (24)

for some user specified tolerance level tol.

The simplicity of our example gives us visual insights on
why the suggested constraint tightening technique is vital
to successfully control the system. First we assume that the
true underlying dynamics of the system have the following
form xt+1 = 3

√
xt + ut + wt, with xt ∈ R, ut ∈ R

and wt ∼ ψ(µ, σ2, τ). We use ψ to denote a truncated at
±τ normal distribution. The distribution has mean µ = 0,
standard deviation σ = 0.2 and τ = 0.05 which in our
example correspond to approximately 5% uncertainty in the
dynamics. Given an initial data set D of size approximately
M ≈ 200 we estimate f̂ using non-parametric regression
with Epanechnikov kernels. The true function f along with
the estimated f̂ can be seen in Figure 1.

We are interested in driving the system to a terminal state
xf ∈ O starting from an initial state xs. At each time
step t the MPC is designed with stage and terminal costs
h(xk|t, uk|t) = (xk|t − xf )TQ(xk|t − xf ) + uTk|tRuk|t and
Q(xt+Tt|t) = (xt+Tt|t − xf )TQ(xt+Tt|t − xf ) respectively.

Furthermore, we set xs = 4.0, xf = −1.0, O = {x| ||x−
xf || ≤ 0.1}, T0 = 6, Q = 1, R = 100, α = 0.05 and the
duration of the task N = 8. Note that xf is an equilibrium
point for uf = 0. Algorithm 2 requires the trajectory of the
previous time step which in the first step is not available.
To overcome this in the first time step we use T0 equally
spaced points between xs and xf around which we perform
the linearization.



Fig. 1: True and estimated nonlinear dynamics functions.

Fig. 2: Closed loop trajectories for the linear, unconstrained
and proposed methods.

Figure 2 shows the closed loop trajectories of our method
along with the linear and the unconstrained ones for 10
different realizations of the disturbance. At time t = 0 all
controllers are initialized at xs = 4.0. The vertical axis of
the plots corresponds to the state xt and the horizontal axis
corresponds to the time step t = 1, . . . , N . After 8 time
steps our proposed method reaches the goal set O while
both other methods are trapped around state x = 1.0. The
plotted open loop trajectories in Figure 3, along with the
dynamics function in Figure 1, provide valuable intuition
on why the two other methods fail. The linear controller at
time step t = 4 is at x4|4 ≈ 0.75 and plans a trajectory
whose first step is state x5|4 ≈ 0.7 but due to the modeling
mismatch stays around state 0.75 indefinitely. This modeling
mismatch also causes the unconstrained controller to fail.
More specifically, the controller is overly confident that it
can move from state x4|4 ≈ 0.9 to state x8|4 ≈ 0.75 by
applying small control inputs and then wrongfully applies
most of the control input at the last time step. The fact that

the controller initially uses small inputs causes it to also get
trapped around state xt ≈ 0.9. Our proposed strategy uses
more accurate linearization of the dynamics, alleviating the
effects of modeling mismatch and consistently outperforming
the other two methods.

Fig. 3: Open loop trajectories at time step t = 4.

We also compare our strategy to the naive MPC which
does not utilize the cumulative error sets for constraint
tightening, i.e., Eαk|t = ∅ in (3c). Furthermore, in this
naive method we compute the linearization regions Xk|t for
k = t, . . . , t + Tt − 1 using (24) with tol taking values in
[0.1, 1] with 0.1 increments. We observe that for values of
tolerance greater than 0.2 this method fails while for values
smaller than 0.2 it succeeds. In the successful experiments
however, the cumulative cost of the controller is more that
four times higher compared to the cost incurred by our
method. Intuitively, when the tolerance level is large, the
naive MPC fails as it resembles the unconstrained MPC. On
the other hand for small tolerance levels the controller is
very conservative, leading to successful completion of the
task but at a higher cost.

VIII. CONCLUSION

In conclusion, our work merges elements from machine
learning, model linearization and robust control theory to
construct a control policy that safely controls a system with
probabilistic guarantees. Our method incorporates the model
estimation uncertainty and the model linearization error in
the formulation mitigating the effects of modeling mismatch
while solving a tractable ATV MPC problem. The effective-
ness of the proposed strategy is illustrated with a simple
nonlinear example in which commonly used estimation and
linearization methods fail.
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[23] J. Hanema, M. Lazar, and R. Tóth, “Heterogeneously parameterized
tube model predictive control for lpv systems,” Automatica, vol. 111,
p. 108622, 2020.

[24] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-
based model predictive control for safe exploration,” in 2018 IEEE
Conference on Decision and Control (CDC). IEEE, 2018, pp. 6059–
6066.

[25] E. D. Klenske, M. N. Zeilinger, B. Schölkopf, and P. Hennig, “Gaus-
sian process-based predictive control for periodic error correction,”
IEEE Transactions on Control Systems Technology, vol. 24, no. 1, pp.
110–121, 2015.

[26] L. Hewing, A. Liniger, and M. N. Zeilinger, “Cautious nmpc with
gaussian process dynamics for autonomous miniature race cars,” in
2018 European Control Conference (ECC). IEEE, 2018, pp. 1341–
1348.

[27] J. R. Gossner, B. Kouvaritakis, and J. A. Rossiter, “Stable generalized
predictive control with constraints and bounded disturbances,” Auto-
matica, vol. 33, no. 4, pp. 551–568, 1997.

[28] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted
learning for control,” in Lazy learning. Springer, 1997, pp. 75–113.

[29] V. A. Epanechnikov, “Non-parametric estimation of a multivariate
probability density,” Theory of Probability & Its Applications, vol. 14,
no. 1, pp. 153–158, 1969.

[30] B. Efron and R. J. Tibshirani, An introduction to the bootstrap. CRC
press, 1994.

[31] L. Chisci, J. A. Rossiter, and G. Zappa, “Systems with persistent dis-
turbances: predictive control with restricted constraints,” Automatica,
vol. 37, no. 7, pp. 1019–1028, 2001.

[32] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear
and hybrid systems. Cambridge University Press, 2017.


	I Introduction
	II Problem Formulation
	III Time-Varying Model Predictive Control
	IV Nonlinear Model Estimation
	V Affine Time-Varying Model Approximation
	VI Model Predictive Control Design
	VI-A Properties

	VII Results
	VIII Conclusion
	IX Acknowledgments
	References

