3,638 research outputs found

    Evidence Transfer for Improving Clustering Tasks Using External Categorical Evidence

    Full text link
    In this paper we introduce evidence transfer for clustering, a deep learning method that can incrementally manipulate the latent representations of an autoencoder, according to external categorical evidence, in order to improve a clustering outcome. By evidence transfer we define the process by which the categorical outcome of an external, auxiliary task is exploited to improve a primary task, in this case representation learning for clustering. Our proposed method makes no assumptions regarding the categorical evidence presented, nor the structure of the latent space. We compare our method, against the baseline solution by performing k-means clustering before and after its deployment. Experiments with three different kinds of evidence show that our method effectively manipulates the latent representations when introduced with real corresponding evidence, while remaining robust when presented with low quality evidence

    Sparsity-aware neural user behavior modeling in online interaction platforms

    Get PDF
    Modern online platforms offer users an opportunity to participate in a variety of content-creation, social networking, and shopping activities. With the rapid proliferation of such online services, learning data-driven user behavior models is indispensable to enable personalized user experiences. Recently, representation learning has emerged as an effective strategy for user modeling, powered by neural networks trained over large volumes of interaction data. Despite their enormous potential, we encounter the unique challenge of data sparsity for a vast majority of entities, e.g., sparsity in ground-truth labels for entities and in entity-level interactions (cold-start users, items in the long-tail, and ephemeral groups). In this dissertation, we develop generalizable neural representation learning frameworks for user behavior modeling designed to address different sparsity challenges across applications. Our problem settings span transductive and inductive learning scenarios, where transductive learning models entities seen during training and inductive learning targets entities that are only observed during inference. We leverage different facets of information reflecting user behavior (e.g., interconnectivity in social networks, temporal and attributed interaction information) to enable personalized inference at scale. Our proposed models are complementary to concurrent advances in neural architectural choices and are adaptive to the rapid addition of new applications in online platforms. First, we examine two transductive learning settings: inference and recommendation in graph-structured and bipartite user-item interactions. In chapter 3, we formulate user profiling in social platforms as semi-supervised learning over graphs given sparse ground-truth labels for node attributes. We present a graph neural network framework that exploits higher-order connectivity structures (network motifs) to learn attributed structural roles of nodes that identify structurally similar nodes with co-varying local attributes. In chapter 4, we design neural collaborative filtering models for few-shot recommendations over user-item interactions. To address item interaction sparsity due to heavy-tailed distributions, our proposed meta-learning framework learns-to-recommend few-shot items by knowledge transfer from arbitrary base recommenders. We show that our framework consistently outperforms state-of-art approaches on overall recommendation (by 5% Recall) while achieving significant gains (of 60-80% Recall) for tail items with fewer than 20 interactions. Next, we explored three inductive learning settings: modeling spread of user-generated content in social networks; item recommendations for ephemeral groups; and friend ranking in large-scale social platforms. In chapter 5, we focus on diffusion prediction in social networks where a vast population of users rarely post content. We introduce a deep generative modeling framework that models users as probability distributions in the latent space with variational priors parameterized by graph neural networks. Our approach enables massive performance gains (over 150% recall) for users with sparse activities while being faster than state-of-the-art neural models by an order of magnitude. In chapter 6, we examine item recommendations for ephemeral groups with limited or no historical interactions together. To overcome group interaction sparsity, we present self-supervised learning strategies that exploit the preference co-variance in observed group memberships for group recommender training. Our framework achieves significant performance gains (over 30% NDCG) over prior state-of-the-art group recommendation models. In chapter 7, we introduce multi-modal inference with graph neural networks that captures knowledge from multiple feature modalities and user interactions for multi-faceted friend ranking. Our approach achieves notable higher performance gains for critical populations of less-active and low degree users
    • …
    corecore