60,670 research outputs found

    A robust sound perception model suitable for neuromorphic implementation

    Get PDF
    Coath M, Sheik S, Chicca E, Indiveri G, Denham S, Wennekers T. A robust sound perception model suitable for neuromorphic implementation. Neuromorphic Engineering. 2014;7(278):1-10.We have recently demonstrated the emergence of dynamic feature sensitivity through exposure to formative stimuli in a real-time neuromorphic system implementing a hybrid analog/digital network of spiking neurons. This network, inspired by models of auditory processing in mammals, includes several mutually connected layers with distance-dependent transmission delays and learning in the form of spike timing dependent plasticity, which effects stimulus-driven changes in the network connectivity. Here we present results that demonstrate that the network is robust to a range of variations in the stimulus pattern, such as are found in naturalistic stimuli and neural responses. This robustness is a property critical to the development of realistic, electronic neuromorphic systems. We analyze the variability of the response of the network to “noisy” stimuli which allows us to characterize the acuity in information-theoretic terms. This provides an objective basis for the quantitative comparison of networks, their connectivity patterns, and learning strategies, which can inform future design decisions. We also show, using stimuli derived from speech samples, that the principles are robust to other challenges, such as variable presentation rate, that would have to be met by systems deployed in the real world. Finally we demonstrate the potential applicability of the approach to real sounds

    Application of Biological Learning Theories to Mobile Robot Avoidance and Approach Behaviors

    Full text link
    We present a neural network that learns to control approach and avoidance behaviors in a mobile robot using the mechanisms of classical and operant conditioning. Learning, which requires no supervision, takes place as the robot moves around an environment cluttered with obstacles and light sources. The neural network requires no knowledge of the geometry of the robot or of the quality, number or configuration of the robot's sensors. In this article we provide a detailed presentation of the model, and show our results with the Khepera and Pioneer 1 mobile robots.Office of Naval Research (N00014-96-1-0772, N00014-95-1-0409

    A Model of the Ventral Visual System Based on Temporal Stability and Local Memory

    Get PDF
    The cerebral cortex is a remarkably homogeneous structure suggesting a rather generic computational machinery. Indeed, under a variety of conditions, functions attributed to specialized areas can be supported by other regions. However, a host of studies have laid out an ever more detailed map of functional cortical areas. This leaves us with the puzzle of whether different cortical areas are intrinsically specialized, or whether they differ mostly by their position in the processing hierarchy and their inputs but apply the same computational principles. Here we show that the computational principle of optimal stability of sensory representations combined with local memory gives rise to a hierarchy of processing stages resembling the ventral visual pathway when it is exposed to continuous natural stimuli. Early processing stages show receptive fields similar to those observed in the primary visual cortex. Subsequent stages are selective for increasingly complex configurations of local features, as observed in higher visual areas. The last stage of the model displays place fields as observed in entorhinal cortex and hippocampus. The results suggest that functionally heterogeneous cortical areas can be generated by only a few computational principles and highlight the importance of the variability of the input signals in forming functional specialization
    corecore