395,035 research outputs found

    Regularized Regression Problem in hyper-RKHS for Learning Kernels

    Full text link
    This paper generalizes the two-stage kernel learning framework, illustrates its utility for kernel learning and out-of-sample extensions, and proves {asymptotic} convergence results for the introduced kernel learning model. Algorithmically, we extend target alignment by hyper-kernels in the two-stage kernel learning framework. The associated kernel learning task is formulated as a regression problem in a hyper-reproducing kernel Hilbert space (hyper-RKHS), i.e., learning on the space of kernels itself. To solve this problem, we present two regression models with bivariate forms in this space, including kernel ridge regression (KRR) and support vector regression (SVR) in the hyper-RKHS. By doing so, it provides significant model flexibility for kernel learning with outstanding performance in real-world applications. Specifically, our kernel learning framework is general, that is, the learned underlying kernel can be positive definite or indefinite, which adapts to various requirements in kernel learning. Theoretically, we study the convergence behavior of these learning algorithms in the hyper-RKHS and derive the learning rates. Different from the traditional approximation analysis in RKHS, our analyses need to consider the non-trivial independence of pairwise samples and the characterisation of hyper-RKHS. To the best of our knowledge, this is the first work in learning theory to study the approximation performance of regularized regression problem in hyper-RKHS.Comment: 25 pages, 3 figure

    On Learning with Finite Memory

    Get PDF
    We consider an infinite collection of agents who make decisions, sequentially, about an unknown underlying binary state of the world. Each agent, prior to making a decision, receives an independent private signal whose distribution depends on the state of the world. Moreover, each agent also observes the decisions of its last K immediate predecessors. We study conditions under which the agent decisions converge to the correct value of the underlying state. We focus on the case where the private signals have bounded information content and investigate whether learning is possible, that is, whether there exist decision rules for the different agents that result in the convergence of their sequence of individual decisions to the correct state of the world. We first consider learning in the almost sure sense and show that it is impossible, for any value of K. We then explore the possibility of convergence in probability of the decisions to the correct state. Here, a distinction arises: if K equals 1, learning in probability is impossible under any decision rule, while for K greater or equal to 2, we design a decision rule that achieves it. We finally consider a new model, involving forward looking strategic agents, each of which maximizes the discounted sum (over all agents) of the probabilities of a correct decision. (The case, studied in previous literature, of myopic agents who maximize the probability of their own decision being correct is an extreme special case.) We show that for any value of K, for any equilibrium of the associated Bayesian game, and under the assumption that each private signal has bounded information content, learning in probability fails to obtain

    Using Hybrid Effectively in Christian Higher Education

    Full text link
    Hybrid is just one of a number of terms used for the convergence of face-to-face and online learning, At the University of Central Florida (UCF) they are called mixed mode courses, In the corporate world the most common language used for hybrid is blended learning, Blended learning, says Bob Mosher, is about using multiple learning modalities, which include, but are not limited to, the Web.7 The blended learning term is also being used more frequently within academic circles,8 Because of the inconsistency in how blended learning is employed, though, and because our goal is not to describe learning in general but to focus on individual courses, this article will use the term hybrid and will apply it more narrowly to mean a course in which face-to-face and online learning are integrated in such a way that the seat time of the course is reduced
    • …
    corecore