
1

On Learning with Finite Memory
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Abstract—We consider an infinite collection of agents who
make decisions, sequentially, about an unknown underlying
binary state of the world. Each agent, prior to making a decision,
receives an independent private signal whose distribution depends
on the state of the world. Moreover, each agent also observes
the decisions of its last K immediate predecessors. We study
conditions under which the agent decisions converge to the
correct value of the underlying state.

We focus on the case where the private signals have bounded
information content and investigate whether learning is possible,
that is, whether there exist decision rules for the different agents
that result in the convergence of their sequence of individual
decisions to the correct state of the world. We first consider
learning in the almost sure sense and show that it is impossible,
for any value of K. We then explore the possibility of convergence
in probability of the decisions to the correct state. Here, a
distinction arises: if K = 1, learning in probability is impossible
under any decision rule, while for K ≥ 2, we design a decision
rule that achieves it.

We finally consider a new model, involving forward looking
strategic agents, each of which maximizes the discounted sum
(over all agents) of the probabilities of a correct decision.
(The case, studied in previous literature, of myopic agents who
maximize the probability of their own decision being correct is
an extreme special case.) We show that for any value of K, for
any equilibrium of the associated Bayesian game, and under the
assumption that each private signal has bounded information
content, learning in probability fails to obtain.

I. INTRODUCTION

In this paper, we study variations and extensions of a
model introduced and studied in Cover’s seminal work [5]. We
consider a Bayesian binary hypothesis testing problem over an
“extended tandem” network architecture whereby each agent
n makes a binary decision xn, based on an independent private
signal sn (with a different distribution under each hypothesis)
and on the decisions xn−1, . . . , xn−K of its K immediate
predecessors, where K is a positive integer constant. We are
interested in the question of whether learning is achieved, that
is, whether the sequence {xn} correctly identifies the true hy-
pothesis (the “state of the world,” to be denoted by θ), almost
surely or in probability, as n→∞. For K = 1, this coincides
with the model introduced by Cover [5] under a somewhat
different interpretation, in terms of a single memory-limited
agent who acts repeatedly but can only remember its last
decision.

At a broader, more abstract level, our work is meant to
shed light on the question whether distributed information held
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by a large number of agents can be successfully aggregated
in a decentralized and bandwidth-limited manner. Consider a
situation where each of a large number of agents has a noisy
signal about an unknown underlying state of the world θ.
This state of the world may represent an unknown parameter
monitored by decentralized sensors, the quality of a product,
the applicability of a therapy, etc. If the individual signals
are independent and the number of agents is large, collecting
these signals at a central processing unit would be sufficient for
inferring (“learning”) the underlying state θ. However, because
of communication or memory constraints, such centralized
processing may be impossible or impractical. It then becomes
of interest to inquire whether θ can be learned under a
decentralized mechanism where each agent communicates a
finite-valued summary of its information (e.g., a purchase or
voting decision, a comment on the success or failure of a
therapy, etc.) to a subset of the other agents, who then refine
their own information about the unknown state.

Whether learning will be achieved under the model that we
study depends on various factors, such as the ones discussed
next :

(a) As demonstrated in [5], the situation is qualitatively
different depending on certain assumptions on the in-
formation content of individual signals. We will focus
exclusively on the case where each signal has bounded
information content, in the sense that the likelihood ratio
associated with a signal is bounded away from zero
and infinity — the so called Bounded Likelihood Ratio
(BLR) assumption. The reason for our focus is that in
the opposite case (of unbounded likelihood ratios), the
learning problem is much easier; indeed, [5] shows that
almost sure learning is possible, even if K = 1.

(b) An aspect that has been little explored in the prior
literature is the distinction between different learning
modes, learning almost surely or in probability. We will
see that the results can be different for these two modes.

(c) The results of [5] suggest that there may be a qualitative
difference depending on the value of K. Our work will
shed light on this dependence.

(d) Whether learning will be achieved or not, depends on the
way that agents make their decisions xn. In an engineer-
ing setting, one can assume that the agents’ decision rules
are chosen (through an offline centralized process) by a
system designer. In contrast, in game-theoretic models,
each agent is assumed to be a Bayesian maximizer of
an individual objective, based on the available informa-
tion. Our work will shed light on this dichotomy by
considering a special class of individual objectives that
incorporate a certain degree of altruism.
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A. Summary of the paper and its contributions

We provide here a summary of our main results, together
with comments on their relation to prior works. In what
follows, we use the term decision rule to refer to the mapping
from an agent’s information to its decision and the term
decision profile to refer to the collection of the agents’ decision
rules. Unless there is a statement to the contrary, all results
mentioned below are derived under the BLR assumption.

(a) Almost sure learning is impossible (Theorem 1). For any
K ≥ 1, we prove that there exists no decision profile that
guarantees almost sure convergence of the sequence {xn}
of decisions to the state of the world θ. This provides
an interesting contrast with the case where the BLR
assumption does not hold; in the latter case, almost sure
learning is actually possible [5].

(b) Learning in probability is impossible if K = 1 (Theorem
2). This strengthens a result of Koplowitz [11] who
showed the impossibility of learning in probability for
the case where K = 1 and the private signals sn are
i.i.d. Bernoulli random variables.

(c) Learning in probability is possible if K ≥ 2 (Theorem 3).
For the case where K ≥ 2, we provide a fairly elaborate
decision profile that yields learning in probability. This
result (as well as the decision profile that we construct)
is inspired by the positive results in [5] and [11], ac-
cording to which, learning in probability (in a slightly
different sense from ours) is possible if each agent can
send 4-valued or 3-valued messages, respectively, to its
successor. In more detail, our construction (when K = 2)
exploits the similarity between the case of a 4-valued
message from the immediate predecessor (as in [5]) and
the case of binary messages from the last two predeces-
sors: indeed, the decision rules of two predecessors can
be designed so that their two binary messages convey (in
some sense) information comparable to that in a 4-valued
message by a single predecessor. Still, our argument is
somewhat more complicated than the ones in [5] and [11],
because in our case, the actions of the two predecessors
cannot be treated as arbitrary codewords: they must obey
the additional requirement that they equal the correct state
of the world with high probability.

(d) No learning by forward looking, altruistic agents (Theo-
rem 4). As already discussed, when K ≥ 2, learning is
possible, using a suitably designed decision profile. On
the other hand, if each agent acts myopically (i.e., maxi-
mizes the probability that its own decision is correct), it
is known that learning will not take place ([5], [3], [1]).
To further understand the impact of selfish behavior, we
consider a variation where each agent is forward looking,
in an altruistic manner: rather than being myopic, each
agent takes into account the impact of its decisions on
the error probabilities of future agents. This case can
be thought of as an intermediate one, where each agent
makes a decision that optimizes its own utility function
(similar to the myopic case), but the utility function
incentivizes the agent to act in a way that corresponds
to good systemwide performance (similar to the case

of centralized design). In this formulation, the optimal
decision rule of each agent depends on the decision rules
of all other agents (both predecessors and successors),
which leads to a game-theoretic formulation and a study
of the associated equilibria. Our main result shows that
under any (suitably defined) equilibrium, learning in
probability fails to obtain. In this sense, the forward look-
ing, altruistic setting falls closer to the myopic rather than
the engineering design version of the problem. Another
interpretation of the result is that the carefully designed
decision profile that can achieve learning will not emerge
through the incentives provided by the altruistic model;
this is not surprising because the designed decision profile
is quite complicated.

B. Outline of the paper

The rest of the paper is organized as follows. In Section
II, we review some of the related literature. In Section III, we
provide a description of our model, notation, and terminology.
In Section IV, we show that almost sure learning is impossible.
In Section V (respectively, Section VI) we show that learning
in probability is impossible when K = 1 (respectively,
possible when K ≥ 2). In Section VII, we describe the
model of forward looking agents and prove the impossibility
of learning. We conclude with some brief comments in Section
VIII.

II. RELATED LITERATURE

The literature on information aggregation in decentralized
systems is vast; we will restrict ourselves to the discussion of
models that involve a Bayesian formulation and are somewhat
related to our work. The literature consists of two main
branches, in statistics/engineering and in economics.

A. Statistics/engineering literature

A basic version of the model that we consider was studied
in the two seminal papers [5] and [11], and which have already
been discussed in the Introduction. The same model was also
studied in [10], which gave a characterization of the minimum
probability of error, when all agents decide according to the
same decision rule. The case of myopic agents and K = 1
was briefly discussed in [5] who argued that learning (in
probability) fails to obtain. A proof of this negative result
was also given in [14], together with the additional result
that myopic decision rules will lead to learning if the BLR
assumption is relaxed. Finally, [12] studies myopic decisions
based on private signals and observation of ternary messages
from a predecessor in a tandem configuration.

Another class of decentralized information fusion problems
was introduced in [20]. In that work, there are again two
hypotheses on the state of the world and each one of a set
of agents receives a noisy signal regarding the true state. Each
agent summarizes its information in a finitely-valued message
which it sends to a fusion center. The fusion center solves a
classical hypothesis testing problem (based on the messages
it has received) and decides on one of the two hypotheses.
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The problem is the design of decision rules for each agent
so as to minimize the probability of error at the fusion
center. A more general network structure, in which each agent
observes messages from a specific set of agents before making
a decision was introduced in [7] and [8], under the assumption
that the topology that describes the message flow is a directed
tree. In all of this literature (and under the assumption that the
private signals are conditionally independent, given the true
hypothesis) each agent’s decision rule should be a likelihood
ratio test, parameterized by a scalar threshold. However, in
general, the problem of optimizing the agent thresholds is a
difficult nonconvex optimization problem — see [21] for a
survey.

In the line of work initiated in [20], the focus is often on
tree architectures with large branching factors, so that the
probability of error decreases exponentially in the number
of sensors. In contrast, for tandem architectures, as in [5],
[11], [14], [12], and for the related ones considered in this
paper, learning often fails to hold or takes place at a slow,
subexponential rate [15]. The focus of our paper is on this
latter class of architectures and the conditions under which
learning takes place.

B. Economics literature

A number of papers, starting with [3] and [4], study learning
in a setting where each agent, prior to making a decision,
observes the history of decisions by all of its predecessors.
Each agent is a Bayesian maximizer of the probability that
its decision is correct. The main finding is the emergence
of “herds” or “ informational cascades,” where agents copy
possibly incorrect decisions of their predecessors and ignore
their own information, a phenomenon consistent with that
discussed by Cover [5] for the tandem model with K = 1. The
most complete analysis of this framework (i.e., with complete
sharing of past decisions) is provided in [17], which also draws
a distinction between the cases where the BLR assumption
holds or fails to hold, and establishes results of the same flavor
as those in [14].

A broader class of observation structures is studied in [18]
and [2], with each agent observing an unordered sample of
decisions drawn from the past, namely, the number of sampled
predecessors who have taken each of the two actions. The
most comprehensive analysis of this setting, where agents are
Bayesian but do not observe the full history of past decisions,
is provided in [1]. This paper considers agents who observe
the decisions of a stochastically generated set of predecessors
and provides conditions on the private signals and the network
structure under which asymptotic learning (in probability) to
the true state of the world is achieved.

To the best of our knowledge, the first paper that studies
forward looking agents is [19]: each agent minimizes the
discounted sum of error probabilities of all subsequent agents,
including their own. This reference considers the case where
the full past history is observed and shows that herding on an
incorrect decision is possible, with positive probability. (On
the other hand, learning is possible if the BLR assumption is
relaxed.) Finally, [13] considers a similar model and explicitly
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Fig. 1: The observation model. If the unknown state of the
world is θ = j, j ∈ {0, 1}, the agents receive independent
private signals sn drawn from a distribution Fj , and also
observe the decisions of the K immediate predecessors. In
this figure, K = 2. If agent n observes the decision of agent
k, we draw an arrow pointing from k to n.

characterizes a simple and tractable equilibrium that generates
a herd, showing again that even with payoff interdependence
and forward looking incentives, payoff-maximizing agents
who observe past decisions can fail to properly aggregate the
available information.

III. THE MODEL AND PRELIMINARIES

In this section we present the observation model (illustrated
in Figure 1) and introduce our basic terminology and notation.

A. The observation model

We consider an infinite sequence of agents, indexed by
n ∈ N, where N is the set of natural numbers. There is an
underlying state of the world θ ∈ {0, 1}, which is modeled
as a random variable whose value is unknown by the agents. To
simplify notation, we assume that both of the underlying states
are a priori equally likely, that is, P(θ = 0) = P(θ = 1) = 1/2.

Each agent n forms posterior beliefs about this state based
on a private signal that takes values in a set S, and also
by observing the decisions of its K immediate predecessors.
We denote by sn the random variable representing agent n’s
private signal, while we use s to denote specific values in S.
Conditional on the state of the world θ being equal to zero
(respectively, one), the private signals are independent random
variables distributed according to a probability measure F0

(respectively, F1) on the set S. Throughout the paper, the
following two assumptions will always remain in effect. First,
F0 and F1 are absolutely continuous with respect to each other,
implying that no signal value can be fully revealing about the
correct state. Second, F0 and F1 are not identical, so that the
private signals can be informative.

Each agent n is to make a decision, denoted by xn, which
takes values in {0, 1}. The information available to agent n
consists of its private signal sn and the random vector

vn = (xn−K , . . . , xn−1).

of decisions of its K immediate predecessors. (For notational
convenience an agent i with index i ≤ 0 is identified with
agent 1.) The decision xn is made according to a decision
rule dn : {0, 1}K × S → {0, 1}:

xn = dn(vn, sn).
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A decision profile is a sequence d = {dn}n∈N of decision
rules. Given a decision profile d, the sequence x = {xn}n∈N of
agent decisions is a well defined stochastic process, described
by a probability measure to be denoted by Pd, or simply by P
if d has been fixed. For notational convenience, we also use
Pj(·) to denote the conditional measure under the state of the
world j, that is

Pj( · ) = P( · | θ = j).

It is also useful to consider randomized decision rules,
whereby the decision xn is determined according to xn =
dn(zn,vn, sn), where zn is an exogenous random variable
which is independent for different n and also independent of
θ and (vn, sn). (The construction In Section VI will involve
a randomized decision rule.)

B. An assumption and the definition of learning

As mentioned in the Introduction, we focus on the case
where every possible private signal value has bounded infor-
mation content. The assumption that follows will remain in
effect throughout the paper and will not be stated explicitly in
our results.

Assumption 1. (Bounded Likelihood Ratios — BLR). There
exist some m > 0 and M <∞, such that the Radon-Nikodym
derivative dF0/dF1 satisfies

m <
dF0

dF1
(s) < M,

for almost all s ∈ S under the measure (F0 + F1)/2

We study two different types of learning. As will be seen
in the sequel, the results for these two types are, in general,
different.

Definition 1. We say that a decision profile d achieves almost
sure learning if

lim
n→∞

xn = θ, Pd-almost surely,

and that it achieves learning in probability if

lim
n→∞

Pd(xn = θ) = 1.

IV. IMPOSSIBILITY OF ALMOST SURE LEARNING

In this section, we show that almost sure learning is impos-
sible, for any value of K.

Theorem 1. For any given number K of observed immediate
predecessors, there exists no decision profile that achieves
almost sure learning.

The rest of this section is devoted to the proof of Theorem 1.
We note that the proof does not use anywhere the fact that
each agents only observes the last K immediate predecessors.
The exact same proof establishes the impossibility of almost
sure learning even for a more general model where each
agent n observes the decisions of an arbitrary subset of its
predecessors. Furthermore, while the proof is given for the
case of deterministic decision rules, the reader can verify that

it also applies to the case where randomized decision rules are
allowed.

The following lemma is a simple consequence of the BLR
assumption and its proof is omitted.

Lemma 1. For any u ∈ {0, 1}K and any j ∈ {0, 1}, we have

m · P1(xn = j | vn = u) < P0(xn = j | vn = u)

< M · P1(xn = j | vn = u), (1)

where m and M are as in Definition 1.

Lemma 1 states that (under the BLR assumption) if under
one state of the world some agent n, after observing u, decides
0 with positive probability, then the same must be true with
proportional probability under the other state of the world. This
proportional dependence of decision probabilities for the two
possible underlying states is central to the proof of Theorem 1.

Before proceeding with the main part of the proof, we need
two more lemmata. Consider a probability space (Ω,F ,P) and
a sequence of events {Ek}, k = 1, 2, . . .. The upper limiting
set of the sequence, lim supk→∞Ek, is defined by

lim sup
k→∞

Ek =
⋂∞
n=1

⋃∞
k=nEk.

(This is the event that infinitely many of the Ek occur.) We
will use a variation of the Borel-Cantelli lemma (Corollary 6.1
in [6]) that does not require independence of events.

Lemma 2. If
∞∑

k=1

P(Ek | E′1 . . . E′k−1) =∞,

then,

P
(

lim sup
k→∞

Ek

)
= 1,

where E′k denotes the complement of Ek.

Finally, we will use the following algebraic fact.

Lemma 3. Consider a sequence {qn}n∈N of real numbers,
with qn ∈ [0, 1], for all n ∈ N. Then,

1−
∑

n∈V
qn ≤

∏

n∈V
(1− qn) ≤ e−

∑
n∈V qn ,

for any V ⊆ N.

Proof: The second inequality is standard. For the first one,
interpret the numbers {qn}n∈N as probabilities of independent
events {En}n∈N. Then, clearly,

P(
⋃
n∈V En) + P(

⋂
n∈V E

′
n) = 1.

Observe that

P(
⋂
n∈V E

′
n) =

∏

n∈V
(1− qn),

and by the union bound,

P(
⋃
n∈V En) ≤

∑

n∈V
qn.

Combining the above yields the desired result.
We are now ready to prove the main result of this section.
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Proof of Theorem 1: Let U denote the set of all binary
sequences with a finite number of zeros (equivalently, the
set of binary sequences that converge to one). Suppose, to
derive a contradiction, that we have almost sure learning. Then,
P1(x ∈ U) = 1. The set U is easily seen to be countable,
which implies that there exists an infinite binary sequence
u = {un}n∈N such that P1(x = u) > 0. In particular,

P1(xk = uk, for all k < n) > 0, for all n ∈ N.

Since (x1, x2, . . . , xn) is determined by (s1, s2, . . . , sn) and
since the distributions of (s1, s2, . . . , sn) under the two hy-
potheses are absolutely continuous with respect to each other,
it follows that

P0(xk = uk, for all k ≤ n) > 0, for all n ∈ N. (2)

We define

a0
n = P0(xn 6= un | xk = uk, for all k < n),

a1
n = P1(xn 6= un | xk = uk, for all k < n).

Lemma 1 implies that

ma1
n < a0

n < Ma1
n, (3)

because for j ∈ {0, 1}, Pj(xn 6= un | xk = uk, for all k <
n) = Pj(xn 6= un | xk = uk, for k = n−K, . . . , n− 1).

Suppose that
∞∑

n=1

a1
n =∞.

Then, Lemma 2, with the identification Ek = {xk 6= uk},
implies that the event {xk 6= uk, for some k} has probability
1, under P1. Therefore, P1(x = u) = 0, which contradicts the
definition of u.

Suppose now that
∑∞
n=1 a

1
n <∞. Then,

∞∑

n=1

a0
n < M ·

∞∑

n=1

a1
n <∞,

and

lim
N→∞

∞∑

n=N

P0(xn 6= un | xk = uk, for all k < n)

= lim
N→∞

∞∑

n=N

a0
n = 0.

Choose some N̂ such that
∞∑

n=N̂

P0(xn 6= un | xk = uk, for all k < n) <
1

2
.

Then,

P0(x = u) = P0(xk = uk, for all k < N̂)

·
∞∏

n=N̂

(1− P0(xn 6= un | xk = uk, for all k < n)).

The first term on the right-hand side is positive by (2), while
∞∏

n=N̂

(1− P0(xn 6= un | xk = uk, for all k < n))

≥ 1−
∞∑

n=N̂

P0(xn 6= un | xk = uk, for all k < n) >
1

2
.

Combining the above, we obtain P0(x = u) > 0 and

lim inf
n→∞

P0(xn = 1) ≥ P0(x = u) > 0,

which contradicts almost sure learning and completes the
proof.

Given Theorem 1, in the rest of the paper we concentrate
exclusively on the weaker notion of learning in probability, as
defined in Section III-B.

V. NO LEARNING IN PROBABILITY WHEN K = 1

In this section, we consider the case where K = 1, so
that each agent only observes the decision of its immediate
predecessor. Our main result, stated next, shows that learning
in probability is not possible.

Theorem 2. If K = 1, there exists no decision profile that
achieves learning in probability.

We fix a decision profile and use a Markov chain to repre-
sent the evolution of the decision process under a particular
state of the world. In particular, we consider a two-state
Markov chain whose state is the observed decision xn−1.
A transition from state i to state j for the Markov chain
associated with θ = l, where i, j, l ∈ {0, 1}, corresponds
to agent n taking the decision j given that its immediate
predecessor n−1 decided i, under the state θ = l. The Markov
property is satisfied because the decision xn, conditional on
the immediate predecessor’s decision, is determined by sn
and hence is (conditionally) independent from the history of
previous decisions. Since a decision profile d is fixed, we can
again suppress d from our notation and define the transition
probabilities of the two chains by

aijn = P0(xn = j | xn−1 = i) (4)
āijn = P1(xn = j | xn−1 = i), (5)

where i, j ∈ {0, 1}. The two chains are illustrated in Fig. 2.
Note that in the current context, and similar to Lemma 1, the
BLR assumption yields the inequalities

m · āijn < aijn < M · āijn , (6)

where i, j ∈ {0, 1}, and m > 0, M < ∞, are as in
Definition 1.

We now establish a further relation between the transition
probabilities under the two states of the world.

Lemma 4. If we have learning in probability, then
∞∑

n=1

a01
n =∞, (7)
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Fig. 2: The Markov chains that model the decision process
for K = 1. States represent observed decisions. The transition
probabilities under θ = 0 or θ = 1 are given by aijn
and āijn , respectively. If learning in probability is to occur,
the probability mass needs to become concentrated on the
highlighted state.

and ∞∑

n=1

a10
n =∞. (8)

Proof: For the sake of contradiction, assume that∑∞
n=1 a

01
n < ∞. By Eq. 6, we also have

∑∞
n=1 ā

01
n < ∞.

Then, the expected number of transitions from state 0 to state
1 is finite under either state of the world. In particular the
(random) number of such transitions is finite, almost surely.
This can only happen if {xn}∞n=1 converges almost surely.
However, almost sure convergence together with learning in
probability would imply almost sure learning, which would
contradict Theorem 1. The proof of the second statement in
the lemma is similar.

The next lemma states that if we have learning in proba-
bility, then the transition probabilities between different states
should converge to zero.

Lemma 5. If we have learning in probability, then

lim
n→∞

a01
n = 0. (9)

Proof: Assume, to arrive at a contradiction that there
exists some ε ∈ (0, 1) such that

a01
n = P0(xn = 1 | xn−1 = 0) > ε,

for infinitely many values of n. Since we have learning in
probability, we also have P0(xn−1 = 0) > 1/2 when n is
large enough. This implies that for infinitely many values of
n,

P0(xn = 1) ≥ P0(xn = 1 | xn−1 = 0)P0(xn−1 = 0) ≥ ε

2
.

But this contradicts learning in probability.
We are now ready to complete the proof of Theorem 2,

by arguing as follows. Since the transition probabilities from
state 0 to state 1 converge to zero, while their sum is infinite,
under either state of the world, we can divide the agents (time)
into blocks so that the corresponding sums of the transition
probabilities from state 0 to state 1 over each block are
approximately constant. If during such a block the sum of
the transition probabilities from state 1 to state 0 is large, then

under the state of the world θ = 1, there is high probability
of starting the block at state 1, moving to state 0, and staying
at state 0 until the end of the block. If on the other hand
the sum of the transition probabilities from state 1 to state 0
is small, then under state of the world θ = 0, there is high
probability of starting the block at state 0, moving to state 1,
and staying at state 1 until the end of the block. Both cases
prevent convergence in probability to the correct decision.

Proof of Theorem 2: We assume that we have learning
in probability and will derive a contradiction. From Lemma 5,
limn→∞ a01

n = 0 and therefore there exists a N̂ ∈ N such that
for all n > N̂,

a01
n <

m

6
. (10)

Moreover, by the learning in probability assumption, there
exists some Ñ ∈ N such that for all n > Ñ ,

P0(xn = 0) >
1

2
, (11)

and
P1(xn = 1) >

1

2
. (12)

Let N = max{N̂ , Ñ} so that Eqs. (10)-(12) all hold for n >
N ,

We divide the agents (time) into blocks so that in each block
the sum of the transition probabilities from state 0 to state 1
can be simultaneously bounded from above and below. We
define the last agents of each block recursively, as follows:

r1 = N,

rk = min



l :

l∑

n=rk−1+1

a01
n ≥

m

2



 .

From Lemma 4, we have that
∑∞
n=N a

01
n = ∞. This fact,

together with Eq. (10), guarantees that the sequence rk is well
defined and strictly increasing.

Let Ak be the block that ends with agent rk+1, i.e., Ak ,
{rk+1, . . . , rk+1}. The construction of the sequence {rk}k∈N
yields ∑

n∈Ak

a01
n ≥

m

2
.

On the other hand, rk+1 is the first agent for which the sum
is at least m/2 and since, by (10), ark+1

< m/6, we get that
∑

n∈Ak

a01
n ≤

m

2
+
m

6
=

2m

3
.

Thus,
m

2
≤
∑

n∈Ak

a01
n ≤

2m

3
, (13)

and combining with Eq. (6), we also have

m

2M
≤
∑

n∈Ak

ā01
n ≤

2

3
, (14)

for all k.

We consider two cases for the sum of transition probabilities
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from state 1 to state 0 during block Ak. We first assume that
∑

n∈Ak

a10
n >

1

2
.

Using Eq. (6), we obtain
∑

n∈Ak

ā10
n >

∑

n∈Ak

1

M
· a10
n >

1

2M
. (15)

The probability of a transition from state 1 to state 0 during
the block Ak, under θ = 1, is

P1
(⋃

n∈Ak
{xn = 0} | xrk = 1

)
= 1−

∏

n∈Ak

(1− ā10
n )

Using Eq. (15) and Lemma 3, the product on the right-hand
side can be bounded from above,

∏

n∈Ak

(1− ā10
n ) ≤ e−

∑
n∈Ak

ā10n ≤ e−1/(2M),

which yields

P1
(⋃

n∈Ak
{xn = 0} | xrk = 1

)
≥ 1− e−1/(2M).

After a transition to state 0 occurs, the probability of staying
at that state until the end of the block is bounded below as
follows:

P1
(
xrk+1

= 0 | ⋃n∈Ak
{xn = 0}

)
≥
∏

n∈Ak

(1− ā01
n ).

The right-hand side can be further bounded using Eq. (14) and
Lemma 3, as follows:

∏

n∈Ak

(1− ā01
n ) ≥ 1−

∑

n∈Ak

ā01
n ≥

1

3
.

Combining the above and using (12), we conclude that

P1(xrk+1
= 0) ≥P1(xrk+1

= 0 | ⋃n∈Ak
{xn = 0})

· P1(
⋃
n∈Ak

{xn = 0} | xrk = 1)P1(xrk = 1)

≥1

3
·
(

1− e−1/(2M)
)
· 1

2
.

We now consider the second case and assume that
∑

n∈Ak

a10
n ≤

1

2
.

The probability of a transition from state 0 to state 1 during
the block Ak is

P0
(⋃

n∈Ak
{xn = 1} | xrk = 0

)
= 1−

∏

n∈Ak

(1− a01
n ).

The product on the right-hand side can be bounded above
using Lemma 3,

∏

n∈Ak

(1− a01
n ) ≤ e−

∑
n∈Ak

a01n ≤ e−m/(2M),

which yields

P0
(⋃

n∈Ak
{xn = 1} | xrk = 0

)
≥ 1− e−m/2.

After a transition to state 1 occurs, the probability of staying
at that state until the end of the block is bounded from below

as follows:

P0
(
xrk+1

= 1 | ⋃n∈Ak
{xn = 1}

)
≥
∏

n∈Ak

(1− a10
n ).

The right-hand side can be bounded using Eq. (14) and
Lemma 3, as follows:

∏

n∈Ak

(1− a10
n ) ≥ 1−

∑

n∈Ak

a10
n ≥

1

2
.

Using also Eq. (11), we conclude that

P0(xrk+1
= 1) ≥P0(xrk+1

= 1 | ⋃n∈Ak
{xn = 1})

· P0(
⋃
n∈Ak

{xn = 1} | xrk = 0)P0(xrk = 0)

≥1

2
·
(

1− e−m/2
)
· 1

2
.

Combining the two cases we conclude that

lim inf
n→∞

Pd(xn 6= θ) (16)

≥ 1

2
min

{
1

6

(
1− e−1/(2M)

)
,

1

4

(
1− e−m/2

)}
> 0

which contradicts learning in probability and concludes the
proof.

Once more, we note that the proof and the result remain
valid for the case where randomized decision rules are al-
lowed.

The coupling between the Markov chains associated with
the two states of the world is central to the proof of Theorem 2.
The importance of the BLR assumption is highlighted by the
observation that if either m = 0 or M = ∞, then the lower
bound obtained in (16) is zero, and the proof fails. The next
section shows that a similar argument cannot be made to work
when K ≥ 2. In particular, we construct a decision profile that
achieves learning in probability when agents observe the last
two immediate predecessors.

VI. LEARNING IN PROBABILITY WHEN K ≥ 2

In this section we show that learning in probability is
possible when K ≥ 2, i.e., when each agent observes the
decisions of two or more of its immediate predecessors.

A. Reduction to the case of binary observations

We will construct a decision profile that leads to learning in
probability, for the special case where the signals sn are binary
(Bernoulli) random variables with a different parameter under
each state of the world. This readily leads to a decision profile
that learns, for the case of general signals. Indeed, if the sn are
general random variables, each agent can quantize its signal,
to obtain a quantized signal s′n = h(sn) that takes values
in {0, 1}. Then, the agents can apply the decision profile for
the binary case. The only requirement is that the distribution
of s′n be different under the two states of the world. This is
straightforward to enforce by proper choice of the quantization
rule h: for example, we may let h(sn) = 1 if and only if
P(θ = 1 | sn) > P(θ = 0 | sn). It is not hard to verify
that with this construction and under our assumption that the
distributions F0 and F1 are not identical, the distributions of
s′n under the two states of the world will be different.
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We also note that it suffices to construct a decision profile
for the case where K = 2. Indeed, if K > 2, we can have
the agents ignore the actions of all but their two immediate
predecessors and employ the decision profile designed for the
case where K = 2.

B. The decision profile
As just discussed, we assume that the signal sn is binary.

For i = 0, 1, we let pi = Pi(sn = 1) and qi = 1 − pi.
We also use p to denote a random variable that is equal to
pi if and only if θ = i. Finally, we let p = (p0 + p1)/2
and q = 1 − p = (q0 + q1)/2. We assume, without loss of
generality, that p0 < p1, in which case we have p0 < p < p1

and q0 > q > q1.
Let {km}m∈N and {rm}m∈N be two sequences of positive

integers that we will define later in this section. We divide the
agents into segments that consist of S-blocks, R-blocks, and
transient agents, as follows. We do not assign the first two
agents to any segment (and the first segment starts with agent
n = 3). For segment m ∈ N:

(i) the first 2km − 1 agents belong to the block Sm;
(ii) the next agent is an SR transient agent;

(iii) the next 2rm − 1 agents belong to the block Rm;
(iv) the next agent is an RS transient agent.

An agent’s information consists of the last two decisions,
denoted by vn = (xn−2, xn−1), and its own signal sn. The
decision profile is constructed so as to enforce that if n is the
first agent of either an S or R block, then vn = (0, 0) or (1, 1).

(i) Agents 1 and 2 choose 0, irrespective of their private
signal.

(ii) During block Sm, for m ≥ 1:
a) If the first agent of the block, denoted by n, observes

(1, 1), it chooses 1, irrespective of its private signal.
If it observes (0, 0) and its private signal is 1, then

xn = zn,

where zn is an independent Bernoulli random variable
with parameter 1/m. If zn = 1 we say that a
searching phase is initiated. (The cases of observing
(1, 0) or (1, 0) will not be allowed to occur.)

b) For the remaining agents in the block:
i) Agents who observe (0, 1) decide 0 for all private

signals.
ii) Agents who observe (1, 0) decide 1 if and only if

their private signal is 1.
iii) Agents who observe (0, 0) decide 0 for all private

signals.
iv) Agents who observe (1, 1) decide 1 for all private

signals.
(iii) During block Rm :

a) If the first agent of the block, denoted by n, observes
(0, 0), it chooses 0, irrespective of its private signal.
If it observes (1, 1) and its private signal is 0, then

xn = 1− zn,
where zn is a Bernoulli random variable with parame-
ter 1/m. If zn = 1, we say that a searching phase is

!(0,0)!

(0,1)!

Decision that achieves learning under BLR

x1 = 1 and x2 = 1

During Si block During Ri block

If agent n is the first If agent n is the first

dn(sn, 0, 0) =

(
sn, with probability 1

k̄+i

0, otherwise
dn(sn, 1, 1) =

(
sn, with probability 1

r̄+i

1, otherwise

dn(sn, 1, 1) = 1 dn(sn, 0, 0) = 0

If agent n is not the first If agent n is not the first
dn(sn, 1, 1) = 1 dn(sn, 0, 0) = 0
dn(sn, 0, 0) = 0 dn(sn, 1, 1) = 0
dn(sn, 0, 1) = 0 dn(sn, 1, 0) = 1
dn(sn, 1, 0) = sn dn(sn, 0, 1) = sn

If agent n is SR transient If agent n is RS transient
dn(sn, 0, 0) = 0 dn(sn, 1, 1) = 0
dn(sn, 0, 1) = 1 dn(sn, 1, 0) = 0

Table 1: A decision profile that achieves learning in probability. Note that this is a
randomized decision . Our analysis in the previous sections assumes deterministic decision
s but can be extended to randomized by standard arguments that would just make notation
harder.

By the construction of the decision profile if agent n is the first one in an S or R block,

the state Tn = (xn�2, xn�1) can be either 00 or 11. If at the beginning of an S-block (say,

block Sm) the state is 11, it does not change. On the contrary, if the state is 00, then we

consider two cases. If the searching phase is not initiated, the state remains 00 until the

end of the block. If the searching phase is initiated, the state at the beginning of the next

block becomes 11 if and only if km ones are observed. Otherwise the state returns to 00. A

symmetrical process takes place during R-blocks.

sn = 1, zn = 1

7.3 Proof

The following fact is used in the proof that follows.
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block Sm) the state is 11, it does not change. On the contrary, if the state is 00, then we

consider two cases. If the searching phase is not initiated, the state remains 00 until the

end of the block. If the searching phase is initiated, the state at the beginning of the next

block becomes 11 if and only if km ones are observed. Otherwise the state returns to 00. A

symmetrical process takes place during R-blocks.

sn = 0or sn = 1

7.3 Proof

The following fact is used in the proof that follows.

22

(1,1)!

9

sn = 0 or zn = 0

We now discuss the evolution of the decisions (see also
Figure 3 for an illustration of the different transitions). We
first note that because v3 = (x1, x2) = (0, 0) and because
of the rules for transient agents, our requirement that vn be
either (0, 0) or (1, 1) when n lies at the beginning of a block, is
automatically satisfied. Next, we discuss the possible evolution
of vn in the course of a block Sm. (The case of a block Rm

is entirely symmetrical.) Let n be the first agent of the block,
and note that the last agent of the block is n + 2km � 2.

1) If vn = (1, 1), then vi = (1, 1) for all agents i in the
block, as well as for the subsequent SR transient agent,
which is agent n + 2km. The latter agent also decides 1,
so that the first agent of the next block, Rm, observes
vn+2km

= (1, 1).
2) If vn = (0, 0) and xn = 0, then vi = (0, 0) for all agents

i in the block, as well as for the subsequent SR transient
agent, which is agent n + 2km � 1. The latter agent also
decides 0, so that the first agent of the next block, Rm,
observes vn+2km

= (0, 0).
3) The interesting case occurs when vn = (0, 0), sn = 1,

and zn = 1, so that a search phase is initiated and xn = 1,
vn+1 = (0, 1), xn+1 = 0, vn+2 = (1, 0). Here there are
two possibilities:
a) Suppose that for every i > n in the block Sm, for

which i�n is even, we have si = 1. Then, for i�n
even, we will have vi = (1, 0), xi = 1, vi+1 =
(0, 1), xi+1 = 0, vi+2 = (1, 0), etc. When i is the
last agent of the block, then i = n+2km�2, so that
i�n is even, vi = (1, 0) and xi = 1. The subsequent
SR transient agent, agent n+2km, sets xn+2km

= 1,
so that the first agent of the next block, Ri, observes
vn+2km = (1, 1).

b) Suppose that for some i > n in the block Sm, for
which i � n is even, we have si = 0. Let i be the
first agent in the block with this property. We have
vi = (1, 0) (as in the previous case), but xi = 0,
so that vi+1 = (0, 0). Then, all subsequent decisions
in the block, as well as by the next SR transient
agent are 0, and the first agent of the next block,
Rm, observes vn+2km

= (0, 0).
To understand the overall effect of our construction, we

consider a (non-homogeneous) Markov chain representation
of the evolution of decisions. We focus on the subsequence of
agents consisting of the first agent of each S- and R-block. By
the construction of the decision profile, the state vn, restricted
to this subsequence, can only take values (0, 0) or (1, 1), and
its evolution can be represented in terms of a 2-state Markov
chain. The transition probabilities between the states in this
Markov chain is given by a product of terms, the number
of which is related to the size of the S- and R-blocks. For
learning to occur, there has to be an infinite number of switches
between the two states in the Markov chain (otherwise getting
stuck in an incorrect decision would have positive probability).
Moreover, the probability of these switches should go to
zero (otherwise there would be a probability of switching to

the incorrect decision that is bounded away from zero). We
obtain these features by allowing switches from state (0, 0)
to state (1, 1) during S-blocks and switches from state (1, 1)
to state (0, 0) during R-blocks. By suitably defining blocks of
increasing size, we can ensure that the probabilities of such
switches remain positive but decay at a desired rate. This will
be accomplished by the parameter choices described next.

Let log(·) stand for the natural logarithm. For m large
enough so that log m is larger than both 1/p and 1/q, we
let

km =
l
log1/p (log m)

m
, (17)

and
rm =

l
log1/q (log m)

m
, (18)

both of which are positive numbers. Otherwise, for small m,
we let km = rm = 1. These choices guarantee learning.

Theorem 3. Under the decision profile and the parameter
choices described in this section,

lim
n!1

P(xn = ✓) = 1.

C. Proof of Theorem 3

The proof relies on the following fact.

Lemma 6. Fix an integer L � 2. If ↵ > 1, then the series
1X

m=L

1

m log↵(m)
,

converges; if ↵  1, then the series diverges.

Proof: See Theorem 3.29 of [16].
The next lemma characterizes the transition probabilities of

the non-homogeneous Markov chain associated with the state
of the first agent of each block. For any m 2 N, let w2m�1 be
the decision of the last agent before block Sm, and let w2m be
the decision of the last agent before block Rm. Note that for
m = 1, w2m�1 = w1 is the decision x2 = 0, since the first
agent of block S1 is agent 3. More generally, when i is odd
(respectively, even), wi describes the state at the beginning
of an S-block (respectively, R-block), and in particular, the
decision of the transient agent preceding the block.

Lemma 7. We have

P(wi+1 = 1 | wi = 0)=

8
<
:

pkm(i) · 1

m(i)
, if i is odd,

0, otherwise,

and

P(wi+1 = 0 | wi = 1)=

8
<
:

qrm(i) · 1

m(i)
, if i is even,

0, otherwise,

where

m(i) =

(
(i + 1)/2, if i is odd,
i/2, if i is even.

(The above conditional probabilities are taken under either
state of the world ✓, with the parameters p and q on the right-

(a) The decision rule for the first
agent of block Sm.

!(0,0)!

(0,1)! (1,0)!
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0, otherwise
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sn, with probability 1

r̄+i

1, otherwise
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If agent n is not the first If agent n is not the first
dn(sn, 1, 1) = 1 dn(sn, 0, 0) = 0
dn(sn, 0, 0) = 0 dn(sn, 1, 1) = 0
dn(sn, 0, 1) = 0 dn(sn, 1, 0) = 1
dn(sn, 1, 0) = sn dn(sn, 0, 1) = sn

If agent n is SR transient If agent n is RS transient
dn(sn, 0, 0) = 0 dn(sn, 1, 1) = 0
dn(sn, 0, 1) = 1 dn(sn, 1, 0) = 0

Table 1: A decision profile that achieves learning in probability. Note that this is a
randomized decision . Our analysis in the previous sections assumes deterministic decision
s but can be extended to randomized by standard arguments that would just make notation
harder.
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the state Tn = (xn�2, xn�1) can be either 00 or 11. If at the beginning of an S-block (say,

block Sm) the state is 11, it does not change. On the contrary, if the state is 00, then we

consider two cases. If the searching phase is not initiated, the state remains 00 until the

end of the block. If the searching phase is initiated, the state at the beginning of the next

block becomes 11 if and only if km ones are observed. Otherwise the state returns to 00. A

symmetrical process takes place during R-blocks.

sn = 1

7.3 Proof

The following fact is used in the proof that follows.
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randomized decision . Our analysis in the previous sections assumes deterministic decision
s but can be extended to randomized by standard arguments that would just make notation
harder.

By the construction of the decision profile if agent n is the first one in an S or R block,

the state Tn = (xn�2, xn�1) can be either 00 or 11. If at the beginning of an S-block (say,

block Sm) the state is 11, it does not change. On the contrary, if the state is 00, then we

consider two cases. If the searching phase is not initiated, the state remains 00 until the

end of the block. If the searching phase is initiated, the state at the beginning of the next

block becomes 11 if and only if km ones are observed. Otherwise the state returns to 00. A

symmetrical process takes place during R-blocks.

sn = 0or sn = 1

7.3 Proof

The following fact is used in the proof that follows.

22

(1,1)!

(b) The decision rule for all agents
of block Sm but the first.

Fig. 3: Illustration of the decision profile during block Sm.
Here, zn is a Bernoulli random variable, independent from sn
or vn, which takes the value zn = 1 with a small probability
1/m. In this figure, the state represents the decisions of the
last two agents and the decision rule dictates the probabilities
of transition between states.

initiated. (The cases of observing (1, 0) or (0, 1) will
not be allowed to occur.)

b) For the remaining agents in the block:
i) Agents who observe (1, 0) decide 1 for all private

signals.
ii) Agents who observe (0, 1) decide 0 if and only if

their private signal is 0.
iii) Agents who observe (0, 0) decide 0 for all private

signals.
iv) Agents who observe (1, 1) decide 1 for all private

signals.
(iv) An SR or RS transient agent n sets xn = xn−1,

irrespective of its private signal.

We now discuss the evolution of the decisions (see also
Figure 3 for an illustration of the different transitions). We
first note that because v3 = (x1, x2) = (0, 0) and because
of the rules for transient agents, our requirement that vn be
either (0, 0) or (1, 1) when n lies at the beginning of a block, is
automatically satisfied. Next, we discuss the possible evolution
of vn in the course of a block Sm. (The case of a block Rm
is entirely symmetrical.) Let n be the first agent of the block,
and note that the last agent of the block is n+ 2km − 2.

1) If vn = (1, 1), then vi = (1, 1) for all agents i in the
block, as well as for the subsequent SR transient agent,
which is agent n+2km−1. The latter agent also decides
1, so that the first agent of the next block, Rm, observes
vn+2km = (1, 1).

2) If vn = (0, 0) and xn = 0, then vi = (0, 0) for all agents
i in the block, as well as for the subsequent SR transient
agent, which is agent n+ 2km − 1. The latter agent also
decides 0, so that the first agent of the next block, Rm,
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observes vn+2km = (0, 0).
3) The interesting case occurs when vn = (0, 0), sn = 1,

and zn = 1, so that a search phase is initiated and xn = 1,
vn+1 = (0, 1), xn+1 = 0, vn+2 = (1, 0). Here there are
two possibilities:

a) Suppose that for every i > n in the block Sm, for
which i−n is even (and with i not the last agent in the
block), we have si = 1. Then, for i−n even, we will
have vi = (1, 0), xi = 1, vi+1 = (0, 1), xi+1 = 0,
vi+2 = (1, 0), etc. When i is the last agent of the
block, then i = n + 2km − 2, so that i− n is even,
vi = (1, 0), and xi = 1. The subsequent SR transient
agent, agent n + 2km − 1, sets xn+2km−1 = 1, so
that the first agent of the next block, Ri, observes
vn+2km = (1, 1).

b) Suppose that for some i > n in the block Sm, for
which i − n is even, we have si = 0. Let i be the
first agent in the block with this property. We have
vi = (1, 0) (as in the previous case), but xi = 0,
so that vi+1 = (0, 0). Then, all subsequent decisions
in the block, as well as by the next SR transient
agent are 0, and the first agent of the next block,
Rm, observes vn+2km = (0, 0).

To understand the overall effect of our construction, we
consider a (non-homogeneous) Markov chain representation
of the evolution of decisions. We focus on the subsequence of
agents consisting of the first agent of each S- and R-block. By
the construction of the decision profile, the state vn, restricted
to this subsequence, can only take values (0, 0) or (1, 1), and
its evolution can be represented by a 2-state Markov chain.
The transition probabilities between the states in this Markov
chain is given by a product of terms, the number of which is
related to the size of the S- and R-blocks. For learning to occur,
there has to be an infinite number of switches between the two
states in the Markov chain (otherwise getting trapped in an
incorrect decision would have positive probability). Moreover,
the probability of these switches should go to zero (otherwise
there would be a probability of switching to the incorrect
decision that is bounded away from zero). We obtain these
features by allowing switches from state (0, 0) to state (1, 1)
during S-blocks and switches from state (1, 1) to state (0, 0)
during R-blocks. By suitably defining blocks of increasing
size, we can ensure that the probabilities of such switches
remain positive but decay at a desired rate. This will be
accomplished by the parameter choices described next.

Let log(·) stand for the natural logarithm. For m large
enough so that logm is larger than both 1/p and 1/q, we
let

km =
⌈
log1/p (logm)

⌉
, (17)

and
rm =

⌈
log1/q (logm)

⌉
, (18)

both of which are positive numbers. Otherwise, for small m,
we let km = rm = 1. These choices guarantee learning.

Theorem 3. Under the decision profile and the parameter

choices described in this section,

lim
n→∞

P(xn = θ) = 1.

C. Proof of Theorem 3

The proof relies on the following fact.

Lemma 6. Fix an integer L ≥ 2. If α > 1, then the series
∞∑

m=L

1

m logα(m)
,

converges; if α ≤ 1, then the series diverges.

Proof: See Theorem 3.29 of [16].
The next lemma characterizes the transition probabilities of

the non-homogeneous Markov chain associated with the state
of the first agent of each block. For any m ∈ N, let w2m−1 be
the decision of the last agent before block Sm, and let w2m be
the decision of the last agent before block Rm. Note that for
m = 1, w2m−1 = w1 is the decision x2 = 0, since the first
agent of block S1 is agent 3. More generally, when i is odd
(respectively, even), wi describes the state at the beginning
of an S-block (respectively, R-block), and in particular, the
decision of the transient agent preceding the block.

Lemma 7. We have

P(wi+1 = 1 | wi = 0)=




pkm(i) · 1

m(i)
, if i is odd,

0, otherwise,

and

P(wi+1 = 0 | wi = 1)=




qrm(i) · 1

m(i)
, if i is even,

0, otherwise,

where

m(i) =

{
(i+ 1)/2, if i is odd,
i/2, if i is even.

(The above conditional probabilities are taken under either
state of the world θ, with the parameters p and q on the right-
hand side being the corresponding probabilities that sn = 1
and sn = 0.)

Proof: Note that m(i) is defined so that wi is associated
with the beginning of either block Sm(i) or Rm(i), depending
on whether i is odd or even, respectively.

Suppose that i is odd, so that we are dealing with the
beginning of an S-block. If wi = 1, then, as discussed in
the previous subsection, we will have wi = 1, which proves
that P(wi+1 = 0 | wi = 1)=0.

Suppose now that i is odd and wi = 0. In this case, there
exists only one particular sequence of events under which the
state will change to wi+1 = 1. Specifically, the searching
phase should be initiated (which happens with probability
1/m(i)), and the private signals of about half of the agents
in the block Sm(i) (km(i) of them) should be equal to 1. The
probability of this sequence of events is precisely the one given
in the statement of the lemma.
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The transition probabilities for the case where i is even are
obtained by a symmetrical argument.

The reason behind our definition of km and rm is that we
wanted to enforce Eqs. (19)-(20) in the lemma that follows.

Lemma 8. We have
∞∑

m=1

pkm1

1

m
=∞,

∞∑

m=1

qrm1

1

m
<∞, (19)

and ∞∑

m=1

pkm0

1

m
<∞,

∞∑

m=1

qrm0

1

m
=∞. (20)

Proof: For m large enough, the definition of km implies
that

logp

(
1

logm

)
≤ km < logp

(
1

logm

)
+ 1,

or equivalently,

p · plogp( 1
log m ) < pkm ≤ plogp( 1

log m ),

where p stands for either p0 or p1. (Note that the direction
of the inequalities was reseversed because the base p of the
logarithms is less than 1.) Dividing by m, using the identity
p = plogp(p), after some elementary manipulations, we obtain

p
1

m logαm
< pkm

1

m
≤ 1

m logαm
,

where α = logp(p). By a similar argument,

q
1

m logβm
< qkm

1

m
≤ 1

m logβm
,

where β = logq(q).
Suppose that p = p1, so that p > p and q < q. Note

that α is a decreasing function of p, because the base of the
logarithm satisfies p < 1. Since logp(p) = 1, it follows that
α = logp(p) < 1, and by a parallel argument, β > 1. Lemma
6 then implies that conditions (19) hold. Similarly, if p = p0,
so that p < p and q > q, then α > 1 and β < 1, and conditions
(20) follow again from Lemma 6.

We are now ready to complete the proof, using a standard
Borel-Cantelli argument.

Proof of Theorem 3: Suppose that θ = 1. Then, by
Lemmata 7 and 8, we have that

∞∑

i=1

P1(wi = 1 | wi = 0) =∞,

while ∞∑

i=1

P1(wi+1 = 0 | wi = 1) <∞.

Therefore, transitions from the state 0 of the Markov chain
{wi} to state 1 are guaranteed to happen, while transitions
from state 1 to state 0 will happen only finitely many times.
It follows that wi converges to 1, almost surely, when θ = 1.
By a symmetrical argument, wi converges to 0, almost surely,
when θ = 0.

Having proved (almost sure) convergence of the sequence
{wi}i∈N, it remains to prove convergence (in probability) of
the sequence {xn}n∈N (of which {wi}i∈N is a subsequence).

This is straightforward, and we only outline the argument. If
wi is the decision xn at the beginning of a segment, then xn =
wi for all n during that segment, unless a searching phase is
initiated. A searching phase gets initiated with probability at
most 1/m at the beginning of the S-block and with probability
at most 1/m at the beginning of the R-block. Since these
probabilities go to zero as m→∞, it is not hard to show that
xn converges in probability to the same limit as wi.

The existence of a decision profile that guarantees learning
in probability naturally leads to the question of providing
incentives to agents to behave accordingly. It is known [5],
[14], [1] that for Bayesian agents who minimize the probability
of an erroneous decision, learning in probability does not
occur, which brings up the question of designing a game whose
equilibria have desirable learning properties. A natural choice
for such a game is explored in the next section, although our
results will turn out to be negative.

VII. FORWARD LOOKING AGENTS

In this section, we assign to each agent a payoff function that
depends on its own decision as well as on future decisions. We
consider the resulting game between the agents and study the
learning properties of the equilibria of this game. In particular,
we show that learning fails to obtain at any of these equilibria.

A. Preliminaries and notation

In order to conform to game-theoretic terminology, we will
now talk about strategies σn (instead of decision rules dn). A
(pure) strategy for agent n is a mapping σn : {0, 1}K ×
S → {0, 1} from the agent’s information set (the vector
vn = (xn−1, . . . , xn−K) of decisions of its K immediate
predecessors and its private signal sn) to a binary decision,
so that xn = σn(vn, sn). A strategy profile is a sequence
of strategies, σ = {σn}n∈N. We use the standard notation
σ−n = {σ1, . . . , σn−1, σn+1, . . .} to denote the collection of
strategies of all agents other than n, so that σ = {σn, σ−n}.
Given a strategy profile σ, the resulting sequence of decisions
{xn}n∈N is a well defined stochastic process.

The payoff function of agent n is
∞∑

k=n

δk−n1xk=θ, (21)

where δ ∈ (0, 1) is a discount factor, and 1A denotes the
indicator random variable of an event A. Consider some agent
n and suppose that the strategy profile σ−n of the remaining
agents has been fixed. Suppose that agent n observes a particu-
lar vector u of predecessor decisions (a realization of vn) and
a realized value s of the private signal sn. Note that (vn, sn)
has a well defined distribution once σ−n has been fixed, and
can be used by agent n to construct a conditional distribution
(a posterior belief) on θ. Agent n now considers the two
alternative decisions, 0 or 1. For any particular decision that
agent n can make, the decisions of subsequent agents k will be
fully determined by the recursion xk = σn(vk, sk), and will
also be well defined random variables. This means that the
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conditional expectation of agent n’s payoff, if agent n makes
a specific decision y ∈ {0, 1},
Un(y;u, s)

= E

[
1θ=y +

∞∑

k=n+1

δk−n1xk=θ

∣∣∣ vn = u, sn = s

]
,

is unambiguously defined, modulo the usual technical caveats
associated with conditioning on zero probability events; in
particular, the conditional expectation is uniquely defined for
“almost all” (u, s), that is, modulo on a set of (vn, sn) values
that have zero probability measure under σ−n. We can now
define our notion of equilibrium, which requires that given the
decision profile of the other agents, each agent maximizes its
conditional expected payoff Un(y;u, s) over y ∈ {0, 1}, for
almost all (u, s).

Definition 2. A strategy profile σ is an equilibrium if for
each n ∈ N, for each vector of observed actions u ∈ {0, 1}K
that can be realized under σ with positive probability (i.e.,
P(vn = u) > 0), and for almost all s ∈ S, σn maximizes the
expected payoff of agent n given the strategies of the other
agents, σ−n, i.e.,

σn(u, s) ∈ argmax
y∈{0,1}

Un(y,u, s).

Our main result follows.

Theorem 4. For any discount factor δ ∈ [0, 1) and for any
equilibrium strategy profile, learning fails to hold.

We note that the set of equilibria, as per Definition 2,
contains the Perfect Bayesian Equilibria, as defined in [9].
Therefore, Theorem 4 implies that there is no learning at any
Perfect Bayesian Equilibrium.

From now on, we assume that we fixed a specific strategy
profile σ. Our analysis centers around the case where an agent
observes a sequence of ones from its immediate predecessors,
that is, vn = e, where e = (1, 1, . . . , 1). The posterior
probability that the state of the world is equal to 1, based
on having observed a sequence of ones is defined by

πn = P(θ = 1 | vn = e).

Here, and in the sequel, we use P to indicate probabilities of
various random variables under the distribution induced by σ,
and similarly for the conditional measures Pj given that the
state of the world is j ∈ {0, 1}. For any private signal value
s ∈ S, we also define

fn(s) = P(θ = 1 | vn = e, sn = s).

Note that these conditional probabilities are well defined as
long as P(vn = e) > 0 and for almost all s. We also let

fn = essinfs∈Sfn(s).

Finally, for every agent n, we define the switching probability
under the state of the world θ = 1, by

γn = P1(σn(e, sn) = 0).

We will prove our result by contradiction, and so we assume

that σ is an equilibrium that achieves learning in probability.
In that case, under state of the world θ = 1, all agents will
eventually be choosing 1 with high probability. Therefore,
when θ = 1, blocks of size K with all agents choosing 1
(i.e., with vn = e) will also occur with high probability. The
Bayes rule will then imply that the posterior probability that
θ = 1, given that vn = e, will eventually be arbitrarily close
to one. The above are formalized in the next Lemma.

Lemma 9. Suppose that the strategy profile σ leads to
learning in probability. Then,

(i) limn→∞ P0(vn = e) = 0 and limn→∞ P1(vn = e) = 1.
(ii) limn→∞ πn = 1,

(iii) limn→∞ fn(s) = 1, uniformly over all s ∈ S, except
possibly on a zero measure subset of S.

(iv) limn→∞ γn = 0.

Proof:
(i) Fix some ε > 0. By the learning in probability assump-

tion,

lim
n→∞

P0(vn = e) ≤ lim
n→∞

P0(xn = 1) = 0.

Furthermore, there exists N ∈ N such that for all n > N ,

P1(xn = 0) <
ε

K
.

Using the union bound, we obtain

P1(vn = e) ≥ 1−
n−1∑

k=n−K
P1(xk = 0) > 1− ε,

for all n > N +K. Thus, limn→∞ P1(vn = e) > 1− ε.
Since ε is arbitrary, the result for P1(vn = e) follows.

(ii) Using the Bayes rule and the fact that the two values of
θ are a priori equally likely, we have

πn =
P1(vn = e)

P0(vn = e) + P1(vn = e)
.

The result follows from part (i).
(iii) Since the two states of the world are a priori equally

likely, the ratio fn(s)/(1− fn(s)) of posterior probabil-
ities, is equal to the likelihood ratio associated with the
information vn = e and sn = s, i.e,

fn(s)

1− fn(s)
=

P1(vn = e)

P0(vn = e)
· dF1

dF0
(s),

almost everywhere, where we have used the indepen-
dence of vn and sn under either state of the world. Using
the BLR assumption,

fn(s)

1− fn(s)
≥ 1

M
· P

1(vn = e)

P0(vn = e)
.

almost everywhere. Hence, using the result in part (i),

lim
n→∞

fn(s)

1− fn(s)
=∞,

uniformly over all s ∈ S, except possibly over a count-
able union of zero measure sets (one zero measure set for
each n). It follows that limn→∞ fn(s) = 1, uniformly
over s ∈ S, except possibly on a zero measure set.
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(iv) We note that

P1(xn = 0,vn = e) = P1(vn = e) · γn.
Since P1(xn = 0,vn = e) ≤ P1(xn = 0), we have
limn→∞ P1(xn = 0,vn = e) = 0. Furthermore, from
part (i), limn→∞ P1(vn = e) = 1. It follows that
limn→∞ γn = 0.

We now proceed to the main part of the proof. We will argue
that under the learning assumption, and in the limit of large n,
it is more profitable for agent n to choose 1 when observing
a sequence of ones from its immediate predecessors, rather
than choose 0, irrespective of its private signal. This implies
that after some finite time N , the agents will be copying their
predecessors’ action, which is inconsistent with learning.

Proof of Theorem 4: Fix some ε ∈ (0, 1− δ). We define

tn = sup
{
t :

n+t∑

k=n

γk ≤ ε
}
.

(Note that tn can be, in principle, infinite.) Since γk converges
to zero (Lemma 9(iv)), it follows that limn→∞ tn =∞.

Consider an agent n who observes vn = e and sn = s, and
who makes a decision xn = 1. (To simplify the presentation,
we assume that s does not belong to any of the exceptional,
zero measure sets involved in earlier statements.) The (condi-
tional) probability that agents n + 1, . . . , n + tn all decide 1
is

P

(
n+tn⋂

k=n+1

{σk(sk, e) = 1}
)

=

n+tn∏

k=n+1

(1− γk)

≥ 1−
n+tn∑

k=n+1

γk ≥ 1− ε.

With agent n choosing the decision xn = 1, its payoff can be
lower bounded by considering only the payoff obtained when
θ = 1 (which, given the information available to agent n,
happens with probability fn(s)) and all agents up to n + tn
make the same decision (no switching):

Un(1; e, s) ≥ fn(s)

(
n+tn∑

k=n

δk−n
)

(1− ε).

Since fn(s) ≤ 1 for all s ∈ S, and
n+tn∑

k=n

δk−n ≤ 1

1− δ ,

we obtain

Un(1; e, s) ≥ fn(s)

(
n+tn∑

k=n

δk−n
)
− ε

1− δ .

Combining with part (iii) of Lemma 9 and the fact that
limn→∞ tn =∞, we obtain

lim inf
n→∞

Un(1; e, s) ≥ 1

1− δ −
ε

1− δ . (22)

On the other hand, the payoff from deciding xn = 0 can be

bounded from above as follows:

Un(0; e, s)

= E

[
1θ=0 +

∞∑

k=n+1

δk−n1xk=θ

∣∣∣ vn = e, sn = s

]

≤ P(θ = 0 | vn = e, sn = s) +
δ

1− δ
= 1− fn(s) +

δ

1− δ .

Therefore, using part (iii) of Lemma 9,

lim sup
n→∞

Un(0; e, s) ≤ δ

1− δ . (23)

Our choice of δ implies that

1

1− δ −
ε

1− δ >
δ

1− δ .

Then, (22) and (23) imply that there exists N ∈ N such that
for all n > N ,

Un(1; e, s) > Un(0; e, s).

almost everywhere in S. Hence, by the equilibrium property
of the strategy profile σn(e, s) = 1 for all n > N and for all
s ∈ S, except possibly on a zero measure set.

Suppose that the state of the world is θ = 1. Then, by
part (i) of Lemma 9, vn converges to e, in probability, and
therefore it converges to e almost surely along a subsequence.
In particular, the event {vn = e} happens infinitely often,
almost surely. If that event happens and n > N , then every
subsequent xk will be equal to 1. Thus, xn converges almost
surely to 1. By a symmetrical argument, if θ = 0, then xn
converges almost surely to 0. Therefore, xn converges almost
surely to θ. This is impossible, by Theorem 1. We have reached
a contradiction, thus establishing that learning in probability
fails under the equilibrium strategy profile σ.

VIII. CONCLUSIONS

We have obtained sharp results on the fundamental lim-
itations of learning by a sequence of agents who only get
to observe the decisions of a fixed number K of immediate
predecessors, under the assumption of Bounded Likelihood
Ratios. Specifically, we have shown that almost sure learning
is impossible whereas learning in probability is possible if and
only if K > 1. We then studied the learning properties of the
equilibria of a game where agents are forward looking, with
a discount factor δ applied to to future decisions. As δ ranges
in [0, 1) the resulting strategy profiles vary from the myopic
(δ = 0) towards the case of fully aligned objectives (δ → 1).
Interestingly, under a full alignment of objectives and a central
designer, learning is possible when K ≥ 2, yet learning fails
to obtain at any equilibrium of the associated game, and for
any δ ∈ [0, 1).

The scheme in Section VI is only of theoretical interest,
because the rate at which the probability of error decays to
zero is extremely slow. This is quite unavoidable, even for
the much more favorable case of unbounded likelihood ratios
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[15], and we do not consider the problem of improving the
convergence rate a promising one.

The existence of a decision profile that guarantees learning
in probability (when K ≥ 2) naturally leads to the question
of whether it is possible to provide incentives to the agents to
behave accordingly. It is known [5], [14], [1] that for myopic
Bayesian agents, learning in probability does not occur, which
raises the question of designing a game whose equilibria have
desirable learning properties. Another interesting direction is
the characterization of the structural properties of decision
profiles that allow or prevent learning whenever the latter is
achievable.

Finally, one may consider extensions to the case of m > 2
hypotheses and m-valued decisions by the agents. Our neg-
ative results are expected to hold, and the construction of a
decision profile that learns when K ≥ m, is also expected to
go through, paralleling a similar extension in [11].
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