234,713 research outputs found

    Time-Contrastive Networks: Self-Supervised Learning from Video

    Full text link
    We propose a self-supervised approach for learning representations and robotic behaviors entirely from unlabeled videos recorded from multiple viewpoints, and study how this representation can be used in two robotic imitation settings: imitating object interactions from videos of humans, and imitating human poses. Imitation of human behavior requires a viewpoint-invariant representation that captures the relationships between end-effectors (hands or robot grippers) and the environment, object attributes, and body pose. We train our representations using a metric learning loss, where multiple simultaneous viewpoints of the same observation are attracted in the embedding space, while being repelled from temporal neighbors which are often visually similar but functionally different. In other words, the model simultaneously learns to recognize what is common between different-looking images, and what is different between similar-looking images. This signal causes our model to discover attributes that do not change across viewpoint, but do change across time, while ignoring nuisance variables such as occlusions, motion blur, lighting and background. We demonstrate that this representation can be used by a robot to directly mimic human poses without an explicit correspondence, and that it can be used as a reward function within a reinforcement learning algorithm. While representations are learned from an unlabeled collection of task-related videos, robot behaviors such as pouring are learned by watching a single 3rd-person demonstration by a human. Reward functions obtained by following the human demonstrations under the learned representation enable efficient reinforcement learning that is practical for real-world robotic systems. Video results, open-source code and dataset are available at https://sermanet.github.io/imitat

    Ranking relations using analogies in biological and information networks

    Get PDF
    Analogical reasoning depends fundamentally on the ability to learn and generalize about relations between objects. We develop an approach to relational learning which, given a set of pairs of objects S={A(1):B(1),A(2):B(2),…,A(N):B(N)}\mathbf{S}=\{A^{(1)}:B^{(1)},A^{(2)}:B^{(2)},\ldots,A^{(N)}:B ^{(N)}\}, measures how well other pairs A:B fit in with the set S\mathbf{S}. Our work addresses the following question: is the relation between objects A and B analogous to those relations found in S\mathbf{S}? Such questions are particularly relevant in information retrieval, where an investigator might want to search for analogous pairs of objects that match the query set of interest. There are many ways in which objects can be related, making the task of measuring analogies very challenging. Our approach combines a similarity measure on function spaces with Bayesian analysis to produce a ranking. It requires data containing features of the objects of interest and a link matrix specifying which relationships exist; no further attributes of such relationships are necessary. We illustrate the potential of our method on text analysis and information networks. An application on discovering functional interactions between pairs of proteins is discussed in detail, where we show that our approach can work in practice even if a small set of protein pairs is provided.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS321 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    A Comparative Study of Pairwise Learning Methods based on Kernel Ridge Regression

    Full text link
    Many machine learning problems can be formulated as predicting labels for a pair of objects. Problems of that kind are often referred to as pairwise learning, dyadic prediction or network inference problems. During the last decade kernel methods have played a dominant role in pairwise learning. They still obtain a state-of-the-art predictive performance, but a theoretical analysis of their behavior has been underexplored in the machine learning literature. In this work we review and unify existing kernel-based algorithms that are commonly used in different pairwise learning settings, ranging from matrix filtering to zero-shot learning. To this end, we focus on closed-form efficient instantiations of Kronecker kernel ridge regression. We show that independent task kernel ridge regression, two-step kernel ridge regression and a linear matrix filter arise naturally as a special case of Kronecker kernel ridge regression, implying that all these methods implicitly minimize a squared loss. In addition, we analyze universality, consistency and spectral filtering properties. Our theoretical results provide valuable insights in assessing the advantages and limitations of existing pairwise learning methods.Comment: arXiv admin note: text overlap with arXiv:1606.0427

    Is what you see what you get? representations, metaphors and tools in mathematics didactics

    No full text
    This paper is exploratory in character. The aim is to investigate ways in which it is possible to use the theoretical concepts of representations, tools and metaphors to try to understand what learners of mathematics ‘see’ during classroom interactions (in their widest sense) and what they might get from such interactions. Through an analysis of a brief classroom episode, the suggestion is made that what learners see may not be the same as what they get. From each of several theoretical perspectives utilised in this paper, what learners ‘get’ appears to be something extra. According to our analysis, this something ‘extra’ is likely to depend on the form of technology being used and the representations and metaphors that are available to both teacher and learner

    Attend and Interact: Higher-Order Object Interactions for Video Understanding

    Full text link
    Human actions often involve complex interactions across several inter-related objects in the scene. However, existing approaches to fine-grained video understanding or visual relationship detection often rely on single object representation or pairwise object relationships. Furthermore, learning interactions across multiple objects in hundreds of frames for video is computationally infeasible and performance may suffer since a large combinatorial space has to be modeled. In this paper, we propose to efficiently learn higher-order interactions between arbitrary subgroups of objects for fine-grained video understanding. We demonstrate that modeling object interactions significantly improves accuracy for both action recognition and video captioning, while saving more than 3-times the computation over traditional pairwise relationships. The proposed method is validated on two large-scale datasets: Kinetics and ActivityNet Captions. Our SINet and SINet-Caption achieve state-of-the-art performances on both datasets even though the videos are sampled at a maximum of 1 FPS. To the best of our knowledge, this is the first work modeling object interactions on open domain large-scale video datasets, and we additionally model higher-order object interactions which improves the performance with low computational costs.Comment: CVPR 201

    Modeling Relational Data via Latent Factor Blockmodel

    Full text link
    In this paper we address the problem of modeling relational data, which appear in many applications such as social network analysis, recommender systems and bioinformatics. Previous studies either consider latent feature based models but disregarding local structure in the network, or focus exclusively on capturing local structure of objects based on latent blockmodels without coupling with latent characteristics of objects. To combine the benefits of the previous work, we propose a novel model that can simultaneously incorporate the effect of latent features and covariates if any, as well as the effect of latent structure that may exist in the data. To achieve this, we model the relation graph as a function of both latent feature factors and latent cluster memberships of objects to collectively discover globally predictive intrinsic properties of objects and capture latent block structure in the network to improve prediction performance. We also develop an optimization transfer algorithm based on the generalized EM-style strategy to learn the latent factors. We prove the efficacy of our proposed model through the link prediction task and cluster analysis task, and extensive experiments on the synthetic data and several real world datasets suggest that our proposed LFBM model outperforms the other state of the art approaches in the evaluated tasks.Comment: 10 pages, 12 figure
    • …
    corecore