7 research outputs found

    Learning Graphical Models From the Glauber Dynamics

    Get PDF
    In this paper, we consider the problem of learning undirected graphical models from data generated according to the Glauber dynamics (also known as the Gibbs sampler). The Glauber dynamics is a Markov chain that sequentially updates individual nodes (variables) in a graphical model and it is frequently used to sample from the stationary distribution (to which it converges given sufficient time). Additionally, the Glauber dynamics is a natural dynamical model in a variety of settings. This paper deviates from the standard formulation of graphical model learning in the literature, where one assumes access to independent identically distributed samples from the distribution. Much of the research on graphical model learning has been directed toward finding algorithms with low computational cost. As the main result of this paper, we establish that the problem of reconstructing binary pairwise graphical models is computationally tractable when we observe the Glauber dynamics. Specifically, we show that a binary pairwise graphical model on p nodes with maximum degree d can be learned in time f(d)p[superscript 2]log p, for a function f(d) defined explicitly in this paper, using nearly the information-Theoretic minimum number of samples.National Science Foundation (U.S.) (Grant CNS-11619)National Science Foundation (U.S.) (Grant CMMI-13351)United States. Army Research Office. Multidisciplinary University Research Initiative (Award W911NF-11-1-00

    Learning graphical models from the Glauber dynamics

    Get PDF
    In this paper we consider the problem of learning undirected graphical models from data generated according to the Glauber dynamics. The Glauber dynamics is a Markov chain that sequentially updates individual nodes (variables) in a graphical model and it is frequently used to sample from the stationary distribution (to which it converges given sufficient time). Additionally, the Glauber dynamics is a natural dynamical model in a variety of settings. This work deviates from the standard formulation of graphical model learning in the literature, where one assumes access to i.i.d. samples from the distribution. Much of the research on graphical model learning has been directed towards finding algorithms with low computational cost. As the main result of this work, we establish that the problem of reconstructing binary pairwise graphical models is computationally tractable when we observe the Glauber dynamics. Specifically, we show that a binary pairwise graphical model on p nodes with maximum degree d can be learned in time f(d)p[superscript 3] log p, for a function f(d), using nearly the information-theoretic minimum possible number of samples. There is no known algorithm of comparable efficiency for learning arbitrary binary pairwise models from i.i.d. samples.National Science Foundation (U.S.) (Grant CMMI-1335155)National Science Foundation (U.S.) (Grant CNS-1161964)United States. Army Research Office. Multidisciplinary University Research Initiative (Award W911NF-11-1-0036

    Strong structure recovery for partially observed discrete Markov random fields on graphs

    Full text link
    We propose a penalized pseudo-likelihood criterion to estimate the graph of conditional dependencies in a discrete Markov random field that can be partially observed. We prove the convergence of the estimator in the case of a finite or countable infinite set of variables. In the finite case the underlying graph can be recovered with probability one, while in the countable infinite case we can recover any finite sub-graph with probability one, by allowing the candidate neighborhoods to grow with the sample size n and provided the penalizing constant is sufficiently large. Our method requires minimal assumptions on the probability distribution and contrary to other approaches in the literature, the usual positivity condition is not needed. We evaluate the performance of the estimator on simulated data and we apply the methodology to a real dataset of stock index markets in different countries

    Exponential Reduction in Sample Complexity with Learning of Ising Model Dynamics

    Full text link
    The usual setting for learning the structure and parameters of a graphical model assumes the availability of independent samples produced from the corresponding multivariate probability distribution. However, for many models the mixing time of the respective Markov chain can be very large and i.i.d. samples may not be obtained. We study the problem of reconstructing binary graphical models from correlated samples produced by a dynamical process, which is natural in many applications. We analyze the sample complexity of two estimators that are based on the interaction screening objective and the conditional likelihood loss. We observe that for samples coming from a dynamical process far from equilibrium, the sample complexity reduces exponentially compared to a dynamical process that mixes quickly.Comment: Accepted to ICML 202

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Learning Graphical Models From the Glauber Dynamics

    No full text
    corecore