3,743 research outputs found

    Mining the Demographics of Political Sentiment from Twitter Using Learning from Label Proportions

    Full text link
    Opinion mining and demographic attribute inference have many applications in social science. In this paper, we propose models to infer daily joint probabilities of multiple latent attributes from Twitter data, such as political sentiment and demographic attributes. Since it is costly and time-consuming to annotate data for traditional supervised classification, we instead propose scalable Learning from Label Proportions (LLP) models for demographic and opinion inference using U.S. Census, national and state political polls, and Cook partisan voting index as population level data. In LLP classification settings, the training data is divided into a set of unlabeled bags, where only the label distribution in of each bag is known, removing the requirement of instance-level annotations. Our proposed LLP model, Weighted Label Regularization (WLR), provides a scalable generalization of prior work on label regularization to support weights for samples inside bags, which is applicable in this setting where bags are arranged hierarchically (e.g., county-level bags are nested inside of state-level bags). We apply our model to Twitter data collected in the year leading up to the 2016 U.S. presidential election, producing estimates of the relationships among political sentiment and demographics over time and place. We find that our approach closely tracks traditional polling data stratified by demographic category, resulting in error reductions of 28-44% over baseline approaches. We also provide descriptive evaluations showing how the model may be used to estimate interactions among many variables and to identify linguistic temporal variation, capabilities which are typically not feasible using traditional polling methods

    Co-training for Demographic Classification Using Deep Learning from Label Proportions

    Full text link
    Deep learning algorithms have recently produced state-of-the-art accuracy in many classification tasks, but this success is typically dependent on access to many annotated training examples. For domains without such data, an attractive alternative is to train models with light, or distant supervision. In this paper, we introduce a deep neural network for the Learning from Label Proportion (LLP) setting, in which the training data consist of bags of unlabeled instances with associated label distributions for each bag. We introduce a new regularization layer, Batch Averager, that can be appended to the last layer of any deep neural network to convert it from supervised learning to LLP. This layer can be implemented readily with existing deep learning packages. To further support domains in which the data consist of two conditionally independent feature views (e.g. image and text), we propose a co-training algorithm that iteratively generates pseudo bags and refits the deep LLP model to improve classification accuracy. We demonstrate our models on demographic attribute classification (gender and race/ethnicity), which has many applications in social media analysis, public health, and marketing. We conduct experiments to predict demographics of Twitter users based on their tweets and profile image, without requiring any user-level annotations for training. We find that the deep LLP approach outperforms baselines for both text and image features separately. Additionally, we find that co-training algorithm improves image and text classification by 4% and 8% absolute F1, respectively. Finally, an ensemble of text and image classifiers further improves the absolute F1 measure by 4% on average

    On Classification with Bags, Groups and Sets

    Full text link
    Many classification problems can be difficult to formulate directly in terms of the traditional supervised setting, where both training and test samples are individual feature vectors. There are cases in which samples are better described by sets of feature vectors, that labels are only available for sets rather than individual samples, or, if individual labels are available, that these are not independent. To better deal with such problems, several extensions of supervised learning have been proposed, where either training and/or test objects are sets of feature vectors. However, having been proposed rather independently of each other, their mutual similarities and differences have hitherto not been mapped out. In this work, we provide an overview of such learning scenarios, propose a taxonomy to illustrate the relationships between them, and discuss directions for further research in these areas

    Recovering from Biased Data: Can Fairness Constraints Improve Accuracy?

    Get PDF
    Multiple fairness constraints have been proposed in the literature, motivated by a range of concerns about how demographic groups might be treated unfairly by machine learning classifiers. In this work we consider a different motivation; learning from biased training data. We posit several ways in which training data may be biased, including having a more noisy or negatively biased labeling process on members of a disadvantaged group, or a decreased prevalence of positive or negative examples from the disadvantaged group, or both. Given such biased training data, Empirical Risk Minimization (ERM) may produce a classifier that not only is biased but also has suboptimal accuracy on the true data distribution. We examine the ability of fairness-constrained ERM to correct this problem. In particular, we find that the Equal Opportunity fairness constraint [Hardt et al., 2016] combined with ERM will provably recover the Bayes optimal classifier under a range of bias models. We also consider other recovery methods including re-weighting the training data, Equalized Odds, and Demographic Parity, and Calibration. These theoretical results provide additional motivation for considering fairness interventions even if an actor cares primarily about accuracy

    Identifying Rare and Subtle Behaviors: A Weakly Supervised Joint Topic Model

    Get PDF

    Online Optimization Methods for the Quantification Problem

    Full text link
    The estimation of class prevalence, i.e., the fraction of a population that belongs to a certain class, is a very useful tool in data analytics and learning, and finds applications in many domains such as sentiment analysis, epidemiology, etc. For example, in sentiment analysis, the objective is often not to estimate whether a specific text conveys a positive or a negative sentiment, but rather estimate the overall distribution of positive and negative sentiments during an event window. A popular way of performing the above task, often dubbed quantification, is to use supervised learning to train a prevalence estimator from labeled data. Contemporary literature cites several performance measures used to measure the success of such prevalence estimators. In this paper we propose the first online stochastic algorithms for directly optimizing these quantification-specific performance measures. We also provide algorithms that optimize hybrid performance measures that seek to balance quantification and classification performance. Our algorithms present a significant advancement in the theory of multivariate optimization and we show, by a rigorous theoretical analysis, that they exhibit optimal convergence. We also report extensive experiments on benchmark and real data sets which demonstrate that our methods significantly outperform existing optimization techniques used for these performance measures.Comment: 26 pages, 6 figures. A short version of this manuscript will appear in the proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 201
    • …
    corecore