44 research outputs found

    Lifelong Neural Predictive Coding: Learning Cumulatively Online without Forgetting

    Full text link
    In lifelong learning systems, especially those based on artificial neural networks, one of the biggest obstacles is the severe inability to retain old knowledge as new information is encountered. This phenomenon is known as catastrophic forgetting. In this article, we propose a new kind of connectionist architecture, the Sequential Neural Coding Network, that is robust to forgetting when learning from streams of data points and, unlike networks of today, does not learn via the immensely popular back-propagation of errors. Grounded in the neurocognitive theory of predictive processing, our model adapts its synapses in a biologically-plausible fashion, while another, complementary neural system rapidly learns to direct and control this cortex-like structure by mimicking the task-executive control functionality of the basal ganglia. In our experiments, we demonstrate that our self-organizing system experiences significantly less forgetting as compared to standard neural models and outperforms a wide swath of previously proposed methods even though it is trained across task datasets in a stream-like fashion. The promising performance of our complementary system on benchmarks, e.g., SplitMNIST, Split Fashion MNIST, and Split NotMNIST, offers evidence that by incorporating mechanisms prominent in real neuronal systems, such as competition, sparse activation patterns, and iterative input processing, a new possibility for tackling the grand challenge of lifelong machine learning opens up.Comment: Key updates including results on standard benchmarks, e.g., split mnist/fmnist/not-mnist. Task selection/basal ganglia model has been integrate

    Continual Learning via Sequential Function-Space Variational Inference

    Full text link
    Sequential Bayesian inference over predictive functions is a natural framework for continual learning from streams of data. However, applying it to neural networks has proved challenging in practice. Addressing the drawbacks of existing techniques, we propose an optimization objective derived by formulating continual learning as sequential function-space variational inference. In contrast to existing methods that regularize neural network parameters directly, this objective allows parameters to vary widely during training, enabling better adaptation to new tasks. Compared to objectives that directly regularize neural network predictions, the proposed objective allows for more flexible variational distributions and more effective regularization. We demonstrate that, across a range of task sequences, neural networks trained via sequential function-space variational inference achieve better predictive accuracy than networks trained with related methods while depending less on maintaining a set of representative points from previous tasks.Comment: Published in Proceedings of the 39th International Conference on Machine Learning (ICML 2022

    Online Continual Learning on Sequences

    Full text link
    Online continual learning (OCL) refers to the ability of a system to learn over time from a continuous stream of data without having to revisit previously encountered training samples. Learning continually in a single data pass is crucial for agents and robots operating in changing environments and required to acquire, fine-tune, and transfer increasingly complex representations from non-i.i.d. input distributions. Machine learning models that address OCL must alleviate \textit{catastrophic forgetting} in which hidden representations are disrupted or completely overwritten when learning from streams of novel input. In this chapter, we summarize and discuss recent deep learning models that address OCL on sequential input through the use (and combination) of synaptic regularization, structural plasticity, and experience replay. Different implementations of replay have been proposed that alleviate catastrophic forgetting in connectionists architectures via the re-occurrence of (latent representations of) input sequences and that functionally resemble mechanisms of hippocampal replay in the mammalian brain. Empirical evidence shows that architectures endowed with experience replay typically outperform architectures without in (online) incremental learning tasks.Comment: L. Oneto et al. (eds.), Recent Trends in Learning From Data, Studies in Computational Intelligence 89

    Evaluating k-NN in the Classification of Data Streams with Concept Drift

    Full text link
    Data streams are often defined as large amounts of data flowing continuously at high speed. Moreover, these data are likely subject to changes in data distribution, known as concept drift. Given all the reasons mentioned above, learning from streams is often online and under restrictions of memory consumption and run-time. Although many classification algorithms exist, most of the works published in the area use Naive Bayes (NB) and Hoeffding Trees (HT) as base learners in their experiments. This article proposes an in-depth evaluation of k-Nearest Neighbors (k-NN) as a candidate for classifying data streams subjected to concept drift. It also analyses the complexity in time and the two main parameters of k-NN, i.e., the number of nearest neighbors used for predictions (k), and window size (w). We compare different parameter values for k-NN and contrast it to NB and HT both with and without a drift detector (RDDM) in many datasets. We formulated and answered 10 research questions which led to the conclusion that k-NN is a worthy candidate for data stream classification, especially when the run-time constraint is not too restrictive.Comment: 25 pages, 10 tables, 7 figures + 30 pages appendi

    A Bi-Criteria Active Learning Algorithm for Dynamic Data Streams

    Get PDF
    Active learning (AL) is a promising way to efficiently building up training sets with minimal supervision. A learner deliberately queries specific instances to tune the classifier’s model using as few labels as possible. The challenge for streaming is that the data distribution may evolve over time and therefore the model must adapt. Another challenge is the sampling bias where the sampled training set does not reflect the underlying data distribution. In presence of concept drift, sampling bias is more likely to occur as the training set needs to represent the whole evolving data. To tackle these challenges, we propose a novel bi-criteria AL approach (BAL) that relies on two selection criteria, namely label uncertainty criterion and density-based cri- terion . While the first criterion selects instances that are the most uncertain in terms of class membership, the latter dynamically curbs the sampling bias by weighting the samples to reflect on the true underlying distribution. To design and implement these two criteria for learning from streams, BAL adopts a Bayesian online learning approach and combines online classification and online clustering through the use of online logistic regression and online growing Gaussian mixture models respectively. Empirical results obtained on standard synthetic and real-world benchmarks show the high performance of the proposed BAL method compared to the state-of-the-art AL method

    Boosting Classifiers for Drifting Concepts

    Get PDF
    This paper proposes a boosting-like method to train a classifier ensemble from data streams. It naturally adapts to concept drift and allows to quantify the drift in terms of its base learners. The algorithm is empirically shown to outperform learning algorithms that ignore concept drift. It performs no worse than advanced adaptive time window and example selection strategies that store all the data and are thus not suited for mining massive streams. --
    corecore