2 research outputs found

    Learning from Multiple Graphs using a Sigmoid Kernel

    Get PDF
    International audienceThis paper studies the problem of learning from a set of input graphs, each of them representing a different relation over the same set of nodes. Our goal is to merge those input graphs by embedding them into an Euclidean space related to the commute time distance in the original graphs. This is done with the help of a small number of labeled nodes. Our algorithm output a combined kernel that can be used for different graph learning tasks. We consider two combination methods: the (classical) linear combination and the sigmoid combination. We compare the combination methods on node classification tasks using different semi-supervised graph learning algorithms. We note that the sigmoid combination method exhibits very positive results

    Strongly Constrained Discrete Hashing

    Get PDF
    Learning to hash is a fundamental technique widely used in large-scale image retrieval. Most existing methods for learning to hash address the involved discrete optimization problem by the continuous relaxation of the binary constraint, which usually leads to large quantization errors and consequently suboptimal binary codes. A few discrete hashing methods have emerged recently. However, they either completely ignore some useful constraints (specifically the balance and decorrelation of hash bits) or just turn those constraints into regularizers that would make the optimization easier but less accurate. In this paper, we propose a novel supervised hashing method named Strongly Constrained Discrete Hashing (SCDH) which overcomes such limitations. It can learn the binary codes for all examples in the training set, and meanwhile obtain a hash function for unseen samples with the above-mentioned constraints preserved. Although the model of SCDH is fairly sophisticated, we are able to find closed-form solutions to all of its optimization subproblems and thus design an efficient algorithm that converges quickly. In addition, we extend SCDH to a kernelized version SCDH_K. Our experiments on three large benchmark datasets have demonstrated that not only can SCDH and SCDH_K achieve substantially higher MAP scores than state-of-the-art baselines, but they run much faster than those that are also supervised
    corecore